- Syllabus

Real Numbers: $\mathbb{R}=\{$ set of all real \#'s $\}$ working def": "numbers that can be expressed as a decimal"

Integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
Rational Numbers: $\mathbb{Q}=\left\{\begin{array}{l|ll}\frac{a}{b} & a, b & \text { are } \\ \text { integers }\end{array}\right\}$
Notation: $x \in \mathbb{R}$ means that
" x is an dement of \mathbb{R}^{\prime}
$x \in \mathbb{Q}$ means that " x is an element of Q "
Cartesian Plane:
\mathbb{R}^{2} pronounced " R-two"

$$
\begin{aligned}
& =\{(a, b) \mid a, b \in \mathbb{R}\} \\
& =\text { collection of all pits in the pore }
\end{aligned}
$$

Intervals:
Let $a, b \in \mathbb{R}$ with $a<b$.

$$
\begin{aligned}
& a, b \in \mathbb{R} \text { with } a<b \text {. } \\
& \cdot(a, b)=\{x \in \mathbb{R} \mid a<x<b\} \\
& \cdot[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\} \\
& \cdot(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\} \\
& \cdot[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\}
\end{aligned}
$$

Visually: We often times express intervals using the real line.
[1]: Denote $(-1,5]$ on real line:

Section 2: Functions

$$
D^{n^{7}}
$$

A real-valued function f with domain Df (or sometimes $\operatorname{Dom}(f)$) is an rule so that for every $x \in D_{f}$, there is exactly one y sit. $f(x)=y$.
\longrightarrow Domain = "stuff that youre allowed to plus in"

Nasiosral Domain: Set of all values for which a function is defied. (usually the one we mean)
For example, take $g(x)=\pi x^{2}$. This has nat. domain:

$$
D_{g}=(-\infty, \infty)
$$

What if we look at $A(r)=\pi r^{2}$? (area of circle) Here, r =radius. So, r clearly cant be negative.
$r \geq 0 \longrightarrow$ So, in this specific case:

$$
\operatorname{Dom}_{A}=[0, \infty)
$$

List of Terfinel Functions:

- Polynomials:

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}{ }^{n}
$$

where $a_{i} ; \in \mathbb{R}, a_{n} \neq 0$ polynomial has degree $n \in\{0,1,2, \ldots\}$

Quick Examples:

$$
\begin{aligned}
& p(x)=2 x^{2}+7 \\
& p(x)=68 x^{20}+x^{3}+3 x^{2}-1
\end{aligned}
$$

$p(x)=\pi \quad$ (yes! constant functions are polynomials)

* Any polynomial $p(x)$ has a domain *

$$
D_{p}=(-\infty, \infty)
$$

- Rational Functions!
$r(x)=\frac{p(x)}{q(x)} \quad, \begin{aligned} & \text { where } p(x), q(x) \text { are } \\ & \text { polynomials }\end{aligned}$
Quick Examples:

$$
\begin{aligned}
& r(x)=\frac{2 x^{2}+1}{8 x^{3}+1} \\
& r(x)=\frac{\pi}{3 x^{3}+2 x-8} \\
& r(x)=\frac{P(x)}{1} \quad\left(\begin{array}{l}
\text { polys' are also rational fen's. } \\
\text { Kinda } \\
\text { a rational }
\end{array}\right)
\end{aligned}
$$

* Any rational function $r(x)=\frac{p(x)}{q(x)} \#$ has domain

$$
D_{r}=\{x \in \mathbb{R} \mid q(x) \neq 0\}
$$

- Radical Functions:

$$
f(x)=x^{1 / m}=\sqrt[m]{x} \quad m \in\{1,2,3, \ldots\}
$$

The domain of these depends on m.

$$
\begin{aligned}
m=\operatorname{even} \rightarrow f(x) & =\sqrt{x} \\
f(x) & =\sqrt[6]{x}
\end{aligned}
$$

* The domain of $f(x)=x^{y_{m}}$ (if $m=$ even)*

$$
\begin{aligned}
& \text { is } D_{f}=[0, \infty) \\
& m=o d d
\end{aligned} \rightarrow f(x)=x^{1 / 3}=\sqrt[3]{x}
$$

* The domain of $f(x)=x^{y_{m}}$ (if $m=o d d$) A is $D_{f}=(-\infty, \infty)$

Notation: Evaluation of f at a : $f(a)$
Let $f(x)=x^{2}+2 \quad a=5$

$$
\rightarrow f(5)=5^{2}+2 \quad \text { easy! }
$$

How about evaluation at $a=x+5$?

$$
f(x+5)=(x+5)^{2}+2 \quad \text { just as easy! }
$$

This is a composition!
Let $g(x)=3 x+\sqrt{x}$.
What is $f(g(x))=(f \circ g)(x)$?

$$
\begin{aligned}
& =(g(x))^{2}+2 \\
& =(3 x+\sqrt{x})^{2}+2
\end{aligned}
$$

What about $(g \circ f)(x)$?

$$
\begin{aligned}
g(f(x)) & =3 f(x)+\sqrt{f(x)} \\
& =3\left(x^{2}+2\right)+\sqrt{x^{2}+2}
\end{aligned}
$$

'Ex: Find the domain
(a) $f(x)=\frac{2 x^{2}+3}{x-1}$
(b) $g(x)=\sqrt{5-x}$
(c) $h(x)=\frac{x^{2}-4}{x+2}$
(a) f is rational: Find where denom $=0$

Denominator: $x-1=0$ \leftrightarrow bod pts

$$
x=1
$$

Domain: everything except $x=1$.

$$
D_{f}=(-\infty, 1) \cup(1, \infty)
$$

(b) g is radical! $\quad g(x)=(5-x)^{1 / 2}$

Since the radical is even: $5-x \geq 0$

$$
\rightarrow s \geq x
$$

$$
D_{g}=(-\infty, 5]
$$

(c) $h(x)$ is a rahonal fan!

$$
h(x)=\frac{x^{2}-4}{x+2}
$$

Note: $h(x)=\frac{(x+2)(x-2)}{x+2}$

Find domain: $\quad h(x)=\frac{x^{2}-4}{x+2}$
Note:

$$
\begin{array}{ll}
h(x)=\frac{(x+2)(x-2)}{(x+2)} & D_{h}=(-\infty,-2) v(-2, \infty) \\
H(x)=(x-2) & D_{H}=(-\infty, \infty)
\end{array}
$$

So, $h(x)=H(x)$ if $x \neq-2$

* Cancelling terms affects domain! .

Ways to Produce Nos Functions:

- Piecelalise Function \longrightarrow "Kinda like a

Defines "a function using different "pieces" of other functions.

For example, consider where to chop

$$
f(x)= \begin{cases}x^{2}+2, & \text { if } x \leq 0 \quad \text { where to chop } \\ x-1, & \text { if } x>0\end{cases}
$$

functions to be used/chopped-up.

Let's take a look at the individual functions:

$$
g_{1}(x)=x^{2}+2 \quad g_{2}(x)=x-1
$$

 functions we're going to use to make $f(x)$.

What does $f(x)$ look like?

Ex: A car company charges $\$ 270$ to rent a car. The first 300 miles are free. If more than 300 mites are driven, then the company charges an additional \$55 per mile.

Want. Cost function based on mileage.

$$
C(m)= \begin{cases}270, & \text { if } m \leq 300 \\ 270+(m-300)(0.55), & \text { if } m>300\end{cases}
$$

- More ways: Dosic Algesraic Oprattons ($(,-, x,-)$) Let $\quad f(x)=\frac{x}{x^{2}+3}, \quad g(x)=\sqrt{x}$
(a)

$$
\begin{aligned}
(f \pm g)(x) & =f(x) \pm g(x) \\
& =\frac{x}{x^{2}+3} \pm \sqrt{x}
\end{aligned}
$$

(b) $(f \cdot g)(x)=\frac{x \sqrt{x}}{x^{2}+3}=\frac{x^{3 / 2}}{x^{2}+3}$
(c) $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\left(\frac{x}{x^{2}+3}\right) \frac{1}{\sqrt{x}}$

$$
=\frac{\sqrt{x}}{x^{2}+3}
$$

(d)

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =\frac{g(x)}{g(x)^{2}+3}=\frac{\sqrt{x}}{(\sqrt{x})^{2}+3}
\end{aligned}
$$

= next page...

Note: $y=x^{2} \geq 0$ and $y=\sqrt{x} \geq 0$. 7
So their compositions gotta also be ≥ 0 ! $=\frac{\sqrt{x}}{|x|+3}$
Common Mistake:

$$
\sqrt{x}^{2}=x \overbrace{}^{\text {Needs to }} \text { be } \geq 0 \text {. }
$$

Instead:

$$
L^{\sqrt{x^{2}}}=|x|=\sqrt{x}^{2}
$$

Exponents Rules:
Let $a \in \mathbb{R}$.

1. $a^{0}=1, a \neq 0$
2. $a^{-n}=\frac{1}{a^{n}}, a \neq 0$
3. $a^{m / n}=\sqrt[n]{a^{m}}$, if $n=$ even, azo

$$
=(\sqrt[n]{a})^{m}
$$

4. $a^{m} \cdot a^{n}=a^{m+n}$. where defined
5. $\frac{a^{m}}{a^{n}}=a^{m-n}$, where defined
6. $\left(a^{m}\right)^{n}=a^{m n}$, where defined
