11/1

Inverse Trigonometric Functions

When we introduced the graph of the sine function, we remarked that it repeats every 2π (this corresponds to a full rotation around the circle). Because of this property, the function $y = \sin(x)$ is not one-to-one. However, if we restrict the function to the interval $[-\pi/2, \pi/2]$, then it is one-to-one. See the figure below.

Figure 1: The unrestricted and restricted sine function

Two notations are commonly used to denote the inverse sine function:

$$y = \sin^{-1}(x)$$
 and $y = \arcsin(x)$

WARNING:

 $y = \sin^{-1}(x)$ is **not** the same thing as $y = \frac{1}{\sin(x)}$.

For example,
$$\sin^{-1}(1) = \frac{\pi}{2} \approx 1.57 \neq 1.19 \approx \frac{1}{\sin(1)}$$

The graph of $\sin^{-1}(x)$ can be found by reflecting the graph of the restricted sine function about the line y = x. Doing so, we have the following graph:

Figure 2: The graph of $y = \sin^{-1}(x)$

Example 1:

Evaluate (i) $\sin^{-1}\left(\frac{1}{2}\right)$ and (ii) $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$.

Solution:

- (i) $\sin^{-1}\left(\frac{1}{2}\right)$ is the number in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is $\frac{1}{2}$. Since $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$, we conclude that $\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$.
- (ii) $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$ is the number in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose sine is $-\frac{\sqrt{3}}{2}$. Since $\sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$, we conclude that $\arcsin\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$.

If f(x) and $f^{-1}(x)$ are any pair of inverse functions, then by definition,

$$f[f^{-1}(x)] = x$$
 for every x in the domain of $f^{-1}(x)$

and

$$f^{-1}[f(x)] = x$$
 for every x in the domain of $f(x)$

Applying these facts to the restricted sine function and its inverse, we obtain the following two basic identities:

$$\sin(\sin^{-1}(x)) = x$$
 for every x in the interval $[-1, 1]$

$$\sin^{-1}(\sin(x)) = x$$
 for every x in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

The following example indicates that the domain restrictions accompanying these two identities cannot be ignored.

Example 2:

Compute $\sin^{-1}(\sin(\pi))$.

Solution:

Notice that $\sin(\pi) = 0$, so $\sin^{-1}(\sin(\pi)) = \sin^{-1}(0)$, but $\sin^{-1}(0) = 0$. Thus, we have that $\sin^{-1}(\sin(\pi)) = 0$, not π . The reason why is because π is not in the domain of the restricted sine function.

We can do the same thing for the cosine function. The graph of cosine repeats every 2π (this corresponds to a full rotation around the circle). Because of this property, the function $y = \cos(x)$ is also not one-to-one. However, if we restrict the function to the interval $[0, \pi]$, then it is one-to-one. See the figure below.

Figure 3: The unrestricted and restricted cosine function

Two notations are commonly used to denote the inverse cosine function:

$$y = \cos^{-1}(x)$$
 and $y = \arccos(x)$

WARNING:

$$y = \cos^{-1}(x)$$
 is **not** the same thing as $y = \frac{1}{\cos(x)}$.

For example,
$$\cos^{-1}(-1) = \pi \approx 3.14 \neq 1.85 \approx \frac{1}{\cos(-1)}$$

The graph of $\cos^{-1}(x)$ can be found by reflecting the graph of the restricted cosine function about the line y = x. Doing so, we have the following graph:

Figure 4: The graph of $y = \cos^{-1}(x)$

Again, we have two basic identities relating the function cos(x) and $cos^{-1}(x)$.

$$cos(cos^{-1}(x)) = x$$
 for every x in the interval [-1, 1]

$$\cos^{-1}(\cos(x)) = x$$
 for every x in the interval $[0, \pi]$.

Example 3:

Evaluate (i) $\cos^{-1}(0)$ and (ii) $\arccos\left(\frac{\sqrt{2}}{2}\right)$.

Solution:

- (i) $\cos^{-1}(0)$ is the number in the interval $[0, \pi]$ whose cosine is 0. Since $\cos\left(\frac{\pi}{2}\right) = 0$, we conclude that $\cos^{-1}(0) = \frac{\pi}{2}$.
- (ii) $\arccos\left(\frac{\sqrt{2}}{2}\right)$ is the number in the interval $[0, \pi]$ whose cosine is $\frac{\sqrt{2}}{2}$. Since $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$, we conclude that $\arccos\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$.

Just as there is a basic identity concerning $\sin(x)$ and $\cos(x)$, namely $\sin^2(x) + \cos^2(x) = 1$, there is also an identity concerning $\sin^{-1}(x)$ and $\cos^{-1}(x)$.

$$\sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2}$$
 for every *x* in the interval [-1, 1]

Finally, we introduce the restricted tangent function and inverse tangent function. The graph of cosine repeats every π . Because of this property, the function $y = \tan(x)$ is also not one-to-one. However, if we restrict the function to the interval $[-\pi/2, \pi/2]$, then it is one-to-one. See the figure below.

Figure 5: The unrestricted and restricted tangent function

Two notations are commonly used to denote the inverse tangent function:

$$y = \tan^{-1}(x)$$
 and $y = \arctan(x)$

WARNING:

$$y = \tan^{-1}(x)$$
 is **not** the same thing as $y = \frac{1}{\tan(x)}$.

For example,
$$\tan^{-1}(1) = \frac{\pi}{4} \approx 0.785 \neq 0.642 \approx \frac{1}{\tan(1)}$$

The graph of $tan^{-1}(x)$ can be found by reflecting the graph of the restricted tangent function about the line y = x. Doing so, we have the following graph:

Figure 6: The graph of $y = \tan^{-1}(x)$

Again, we have two basic identities relating the function tan(x) and $tan^{-1}(x)$.

$$tan(tan^{-1}(x)) = x$$
 for every real number x
 $tan^{-1}(tan(x)) = x$ for every x in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Example 4:

Evaluate (i) $tan^{-1}(-1)$ and (ii) $arctan(\sqrt{3})$.

Solution:

- (i) $\tan^{-1}(-1)$ is the number in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose tangent is -1. Since $\tan\left(-\frac{\pi}{4}\right) = -1$, we conclude that $\tan^{-1}(-1) = \frac{\pi}{4}$.
- (ii) $\arctan(\sqrt{3})$ is the number in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ whose tangent is $\sqrt{3}$. Since $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$, we conclude that $\arctan(\sqrt{3}) = \frac{\pi}{3}$.

Example 5:

Simplify the quantity $\csc(\tan^{-1}(x))$, where x > 0.

Solution:

We let $\theta = \tan^{-1}(x)$. That is, we have that $\tan(\theta) = x = x/1$. Using this information, we can sketch a right triangle with an angle θ whose tangent is x. See Figure 7.

Figure 7: Graph of $\theta = \tan^{-1}(x)$

The Pythagorean Theorem tells us that the length of the hypotenuse in this triangle is equal to $\sqrt{1+x^2}$. Consequently, we have:

$$\csc(\tan^{-1}(\theta)) = \csc(\theta) = \frac{\text{hypotenuse}}{\text{side opposite}} = \frac{\sqrt{1+x^2}}{x}.$$