## Summary of Critical Values, Derivative Tests and Concavity

If $f^{\prime}(c)=0$, or if $f^{\prime}(c)$ does not exist (DNE), then $c$ is a critical number. The function could have a local extreme at $c$ (including a nondifferentiable cusp or corner) or it could have an inflection point.

Before invoking the first derivative test to see if the derivative changes sign, we could go straight to the second derivative test, testing $f^{\prime \prime}(c)$ and drawing conclusions as follows:

- If $f^{\prime \prime}(c)>0$, the function is concave up at $c$ because the trend of the slope of the tangent is to increase. $f(c)$ is a local min.
- If $f^{\prime \prime}(c)<0$, the function is concave down at $c$ because the trend of the slope of the tangent is to decrease. $f(c)$ is a local max.
- If $f^{\prime \prime}(c)=0$, we could have a local max or a local min, or we could have an inflection point. How do we decide what it is? There are a couple of things we can do:


## EITHER

1. Resort to the first derivative test, checking values on either side of $c$ to see if $f^{\prime}(c)$ changes sign.

If it does, we have a local extreme at $x=c$.
If it doesn't, we have an inflection point at $x=c$.
OR
2. Stay with the second derivative test, testing for a value on either side of $c$ to see if $f^{\prime \prime}(x)$ changes sign. If $f^{\prime \prime}(x)<0$ to the left of $c$ and $>0$ to the right of $c$ (or if it is $>0$ to the left and $<0$ to the right), then $c$ is clearly an inflection point because concavity has changed.

If $f^{\prime \prime}(x)>0$ on both sides then $x=c$ is a local min If $f^{\prime \prime}(x)<0$ on both sides, then $x=c$ is a local max.

Following are two examples that are illustrative because the functions are so simple you can already sketch them. Observe the derivative tests vis-a-vis the sketches to lock in your understanding.

## Example 1: $\quad$ Sketch the function $f(x)=x^{4}$

$f^{\prime}(x)=4 x^{3}=0$ at $x=0 ; f^{\prime \prime}(x)=12 x^{2}=0$ at $x=0$, also. What kind of critical point, then, is $c=0$ ? There are two ways to find out:

First derivative test: Checking values into $f^{\prime}(x)$ on either side of $0, f^{\prime}(-1)=4(-1)^{3}=-4$ and $f^{\prime}(1)=4(1)^{3}=4$. Because $f^{\prime}$ changes sign, negative to positive, $c=0$ is a local min.

Second derivative test: Checking values of $f^{\prime \prime}(x)$ on either side of $0, f^{\prime \prime}(-1)=12(-1)^{2}=12$ and $f^{\prime \prime}(1)=12(1)^{2}=$ 12. No change in $\operatorname{sign}, f^{\prime \prime}$ is positive on either side, so the function is concave up and $c=0$ is a local min.

## Example 2: $\quad$ Sketch the function $f(x)=x^{3}$

$f^{\prime}(x)=3 x^{2}=0$ at $x=0 ; f^{\prime \prime}(x)=6 x=0$ at $x=0$ also. So, what kind of critical point is $c=0$ ? There are two
ways to find out:

First derivative test: Checking values of $f^{\prime}(x)$ on either side of $0, f^{\prime}(-1)=3(-1)^{2}=3$, and $f^{\prime}(1)=3(1)^{2}=3$. Thus, the function is increasing on either side of $c=0, \mathrm{so} c$ is an inflection point.

Second derivative test: Checking values of $f^{\prime \prime}(x)$ on either side of $0, f^{\prime \prime}(-1)=6(-1)=-6<0 . f^{\prime \prime}(1)=6(1)=6>$ 0 . The change in sign indicates the graph is concave down to the left of $x=0$ and concave up to the right of it, at $x=0$ is an inflection.

## Example 3: $\quad$ Sketch the function $f^{\prime}(x)=x^{1 / 3}$

$f^{\prime}(x)=\frac{1}{3 x^{2 / 3}}$. The function is differentiable on its domain, but its derivative cannot equal zero. However, $f^{\prime}(0)$ does not exist (division by zero). In the DNE sense, $c=0$ is a critical value of the function. (You should see from your graph that the tangent line to the function at $x=0$ is a vertical line.)

First derivative test: The function is increasing everywhere, as is easily seen in the graph; algebraically, $f^{\prime}(x)$ is positive on the domain, observable by the fact that $x^{2 / 3}$ is the square of a cube root. Thus, by the first derivative test, the function is everywhere increasing. There is no max or min. Is it an inflection point?
$f^{\prime \prime}(x)=-\frac{2}{9 x^{5 / 3}}$
Second derivative test: $f^{\prime \prime}(x)$ DNE at $x=0$, for the same reason (division by zero). Checking values of $f^{\prime \prime}(x)$ on either side of $0, f^{\prime \prime}(-1)=-\frac{2}{9(-1)^{5 / 3}}=\frac{2}{9}>0$ (concave up). $f^{\prime}(1)=-\frac{2}{9(1)^{5 / 3}}=-\frac{2}{9}<0$ (concave down). $x=0$ is a point of inflection.

