Math 220-04 Take-home quiz Due 13 November 2015

For the function $f(x,y) = 6y^2 - 2y^3 + 3x^2 + 6xy$, write out all first and second order partial derivatives

$$f_x = f_y = f_y$$

$$f_{xx} = f_{yy} =$$

$$f_{xy} =$$

Find the critical values (x_0, y_0) of the function, that is, those points where $f_x = 0$ and $f_y = 0$.

Solve the equation of the discriminant for each of the critical points you found:

$$D = f_{xx} f_{yy} - f_{xy}^{2}$$

Determine if these values constitute local maxima, minima, or saddle points using the criteria:

If D < 0 then (x_0, y_0) is a saddle point.

If
$$D > 0$$
 then (x_0, y_0) is
$$\begin{cases} \text{maximum if } f_{xx} < 0 \text{ of } f_{yy} < 0 \\ \text{minimum if } f_{xx} > 0 \text{ of } f_{yy} > 0 \end{cases}$$

Finally, give the value of the function at the various extremes and/or saddle points.

Do the same for the function:

$$f(x,y) = 4x^2 + y^2 + 2x^2y - 1$$