
On properties of a family of orthogonal polynomials
Vladislav Kargin1

1. Scalar product

Let H denote the skew-field of quaternions, let Λ ∼= R3 be the R-
vector space of imaginary quaternions, and let M be the right H-
module of polynomial functions on Λ. Elements of this module are
defined as finite sums of zkak, where ak are arbitrary quaternions and
z ∈ Λ,

P (z) =
n∑

k=0

zkak.

Let

dµ(z) = f(z) dm(z),

where dm(z) is the Lebesgue measure on R3, and

(1) f(z) = (2π)−3/2e−|z|2/2.

Define the scalar product on M as

(2) ⟨u(z), w(z)⟩ =
∫
Λ

u(z)w(z) dµ(z).

This function is linear in the second argument

⟨u(z), w(z)α⟩ = ⟨u(z), w(z)⟩α

for every α ∈ H, and it also has the property that ⟨w(z), u(z)⟩ =

⟨u(z), w(z)⟩.
In addition, the scalar product is positive definite:

⟨u(z), u(z)⟩ ≥ 0 for all u(z) ∈ M,

and equality holds only if u(z) = 0.

As usual, the norm of a function is defined as the square root of the
scalar product of the function with itself,

∥u(z)∥ =
√

⟨u(z), u(z)⟩.
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m/n 0 1 2 3 4 5 6
0 1 0 −3 0 5 · 3 0 −7!!

1 0 3 0 −5 · 3 0 7!! 0
2 −3 0 5 · 3 0 −7!! 0 9!!

3 0 −5 · 3 0 7!! 0 −9!! 0
4 5 · 3 0 −7!! 0 9!! 0 −11!!

5 0 7!! 0 −9!! 0 11!! 0
6 −7!! 0 9!! 0 −11!! 0 13!!

Table 1. Scalar products of monomials, ⟨zm, zn⟩.

We say that a family of quaternionic functions on Λ, {uk} is or-
thonormal, if

(3) ⟨uk, ul⟩ =

1, if k = l,

0, if k ̸= l.

Let Pk(z) denote the system of monic orthogonal polynomials. We
can show that this system exists and unique by the Gram-Schmidt
orthogonalization process.

In order to understand properties of this system of functions, we
calculate the scalar products of monomials explicitly.
Theorem 1.1 |Scalar produ�s of monomials |.
For all non-negative integers m and n

⟨zm, zn⟩ =

{
(−1)

n−m
2 (m+ n+ 1)!!, if n−m is even,

0 if n−m is odd.

Proof of Theorem 1.1. We start with a useful lemma.
Lemma 1.2.
For every non-negative integers l and k,

the integral
∫
Λ
|z|2l zkdµ (z) is real.

Proof of Lemma. We write z = x1i+x2j+x3k and expand the expres-
sion |z|2l zk. We claim that every monomial coefficient before i, j, or
k in this expansion has one of its variables xi in the odd power. If
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this claim holds, then the integral of these monomials with respect to
measure µ is 0, by the symmetry of µ, and the lemma is proved.

It is sufficient to prove the claim for l = 0, since |z|2l = (x2
1+x2

2+x2
3)

l

is real and all monomials in its expansion have variables in the even
power.

Consider a single term in the expansion of zk, for example, x1ix3kx2jx2j . . . ,
It can be either imaginary or real, and it is clear that it is imaginary
if and only if the term contain at least one of the variables in the odd
power. Indeed, we can do transpositions of imaginary units in the ex-
pansion and this will only introduce real factors. Hence, if all powers
are even then all imaginary units in the product can be paired off and
cancelled out, so that the product is real.

Therefore the claim and the lemma are proved. □

Now, let us calculate the real part of the expression |z|2l zk. Since
|z|2l is real, we only need to calculate the real part of zk.
Lemma 1.3.
Let z = x1i + x2j + x3k. Then,

Re zk = Re zk =
{

(−1)r (x2
1 + x2

2 + x2
3)

r
, if k = 2r,

0, if k is odd.

Proof of Lemma. We write the quaternion z in its matrix form:

φ(z) =

(
x1i x2 + x3i

−x2 + x3i −x1i

)
,

and note that for every quaternion w its real part can be computed
as 1

2
Trφ(w). The eigenvalues of φ(z) are ±i

√
x2
1 + x2

2 + x2
3. Hence, we

compute:

Re zk = 1

2
Trφ(zk) =

{
(−1)r (x2

1 + x2
2 + x2

3)
l
, if k = 2l,

0, if k is odd.

The case of Re zk is similar. □

Now we can finish the proof of Theorem 1.1.



4

Let m ≤ n and note that

Re (zmzn) = |z|2mRe zn−m =

(−1)
n−m

2 (x2
1 + x2

2 + x2
3)

m+n
2 , if n−m is even,

0, otherwise.

Next we calculate:∫
R3

(
x2
1 + x2

2 + x2
3

)l
dµ(z) =

1

(2π)3/2

∫
S2

∫
R
r2l+2e−r2/2drdS

=
2l+1

√
π
Γ

(
l +

3

2

)
.

Hence,∫
zmzndµ(z) = (−1)

n−m
2

2
m+n

2
+1

√
π

Γ

(
m+ n+ 3

2

)
= (−1)

n−m
2 (m+n+1)!!

□
Since all entries in the matrix of scalar products are real, we derive

an important consequence that the coefficients of monic orthogonal
polynomials are real.

Note that ⟨z, z⟩ ̸= ⟨1, z2⟩, which means that the scalar product can-
not be written as ⟨P (z), Q(z)⟩ =

∫
R P (x)Q(x)µ(dx) for a measure µ on

the real line.

2. Three-term recurrence relation

By usual means, we can derive the three-term recurrence relation for
the orthogonal polynomials.

Theorem 2.1 |Three-term recurrence for P - poly-
nomials |.
Suppose that Pn (z) are monic polynomials orthogonal with respect to
the scalar product in (2), and that P0 (z) = 1, and P1(z) = z. Then
these polynomials satisfy the following recurrence relation:

(4) Pn+1 (z) = zPn (z) + βnPn−1 (z) ,

where βn are some real positive coefficients, and

βn =
⟨Pn, Pn⟩

⟨Pn−1, Pn−1⟩
.
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n Pn hn βn

0 1 1 *
1 z 3 3
2 z2 + 3 6 2
3 z3 + 5z 30 5
4 z4 + 10z2 + 15 120 4
5 z5 + 14z3 + 35z 840 7
6 z6 + 21z4 + 105z2 + 105 5,040 6
7 z7 + 27z5 + 189z3 + 315z 45,360 9
8 z8 + 36z6 + 378z4 + 1260z2 + 945 362,880 8
9 z9 + 44z7 + 594z5 + 2772z3 + 3465z 3,991,680 11

Table 2. Monic orthogonal polynomials, their squared
norms and βn.

The proof is standard and omitted.
Table 2 is the table of the first orthogonal monic polynomials to-

gether with recursion coefficients βn and the squared norms of polyno-
mials hn := ⟨Pn, Pn⟩ .

In the next step, we are going to derive more explicit formulas for the
orthogonal polynomials Pn, their squared norms hn, and coefficients βn.

3. Determinantal formulas

Let sij := ⟨zi, zj⟩ . (These are elements of the infinite matrix in Table
1.) And let Dn denote the principal submatrices of the matrix of scalar
products:

Dn =


s00 s01 · · · s0n

s10 s11 · · · s1n
... ... . . . ...

sn0 sn1 · · · snn

 .

Finally let |Dn| denotes det(Dn).
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Theorem 3.1 |Determinantal formula for for P -
polynomials |.
The monic orthogonal polynomials are given by the formula

Pn (z) =
1

|Dn−1|
det


s00 s01 · · · s0,n−1 s0n
s10 s11 · · · s1,n−1 s1n
... ... . . . ... ...

sn−1,0 sn−1,1 · · · sn−1,n−1 sn−1,n

1 z · · · zn−1 zn

 .

Their squared norms are hn := ⟨Pn (z) , Pn (z)⟩ = |Dn| / |Dn−1| .
Proof: The polynomials are clearly monic. In order to prove or-

thogonality, we write

⟨zm, Pn (z)⟩ =
1

|Dn−1|
det


s00 s01 · · · s0,n−1 s0n
s10 s11 · · · s1,n−1 s1n
... ... . . . ... ...

sn−1,0 sn−1,1 · · · sn−1,n−1 sn−1,n

⟨zm, 1⟩ ⟨zm, z⟩ · · · ⟨zm, zn−1⟩ ⟨zm, zn⟩

 .

This equals 0 for m ≤ n− 1 because there are two coinciding rows.
For m = n, we have ⟨zn, Pn (z)⟩ = |Dn| / |Dn−1| . Since the polyno-

mials are monic, ⟨Pn (z) , Pn (z)⟩ = ⟨zn, Pn (z)⟩ = |Dn| / |Dn−1| . □

3.1. Norm of polynomials.

Theorem 3.2 |Norms and recurrence coefficients for
P - polynomials |.

hn =

{
n!(n+ 2), if n is odd,
(n+ 1)!, if n is even.

βn =

{
n+ 2, if n is odd,
n, if n is even.

As a corollary, we find that |Dn| > 0 for all n and, therefore, all
eigenvalues of matrix Dn are positive. This implies that the scalar
product ⟨u, v⟩ is positive definite on M.
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Figure 1. Plot of h
−3/4
n Pn(i

√
3nx) for n = 1, . . . , 9. The

scaling exponent −3/4 was chosen ad hoc to fit
the plots on the Figure.

Proof of explicit formulas for hn and βn. The proof proceeds
by exhibiting an explicit formula for the determinant |Dn|.

Theorem 3.3.

|Dn| =



⌊n
2 ⌋∏

m=0

(2m+ 1)!

2

(n+ 2)!!, if n is odd,⌊n
2 ⌋∏

m=0

(2m+ 1)!

2

(n+1)!!
(n+1)!

, if n is even.

Proof: First consider the matrix D′ that consists of odd columns
and odd rows of matrix Dn. (Note that the enumeration of entries in
columns and rows starts from 0. However, we call the column with
entries sk,0 the first column and consider it as the odd column.)

D′ =


1 3!! · · · (2m+ 1)!!

3!! 5!! · · · (2m+ 3)!!
... ... . . . ...

(2m+ 1)!! (2m+ 3)!! · · · (4m+ 1)!!

 ,



8

where m =
⌊
n
2

⌋
. We claim that

AD′ =


1 0 0 · · · 0

a1,0 1 0 · · · 0

a2,0 a2,1 1 · · · 0
... ... ... . . . ...

am,0 am,1 am,2 · · · 1

D′

=


1 ∗ ∗ · · · ∗
0 3! ∗ · · · ∗
0 0 5! · · · ∗
... ... ... . . . ...
0 0 0 · · · (2m+ 1)!

 ,

where matrix entries ast are given by formula

ast =

{
(−2)t−s (2s+1)!

(2t+1)!(s−t)!
, if 0 ≤ t ≤ s ≤ m,

0, otherwise.

Indeed,

(AD′)s,p =
s∑

t=0

astD
′
tp

=
s∑

t=0

(−2)t−s (2s+ 1)!

(2t+ 1)!(s− t)!
(2(t+ p) + 1)!!

= (−1)s (2s+ 1)!!
s∑

t=0

(−1)t
(
s

t

)
Mp (t) ,(5)

where

Mp (t) =
(2(t+ p) + 1)!!

(2t+ 1)!!

is a polynomial of degree p in t.
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Lemma 3.4.
For every polynomial fp (t) of degree p < s,

s∑
t=0

(−1)t
(
s

t

)
fp (t) = 0.

If p = s, then
s∑

t=0

(−1)t
(
s

t

)
fp (t) = (−1)s s!a0,

where a0 is the coefficient before the highest term tp in fp (t) .

Proof of Lemma 1.8. For p = 0, this is clear,
s∑

t=0

(−1)t
(
s

t

)
= (1− 1)s = 0.

Consider g(x) = (1− x)s . Then

g′ (x) = −s (1− x)s−1 =
s∑

t=1

(−1)t
(
s

t

)
txt−1,

and if s > 1, then by substituting x = 1 we obtain
s∑

t=0

(−1)t
(
s

t

)
t = 0.

Similarly, by differentiating g(x) twice, we get for s > 2,

s∑
t=0

(−1)t
(
s

t

)
t (t− 1) = 0.

Together with the previous result, this implies that
s∑

t=0

(−1)t
(
s

t

)
t2 = 0.

We can then proceed by induction, and prove that for every p < s,
s∑

t=0

(−1)t
(
s

t

)
tp = 0.

Finally, for p = s, we find that
s∑

t=0

(−1)t
(
s

t

)
tp = (−1)s s!

□
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An application of this lemma to the expression (5) shows that (AD′)s,p =

0 for p < s and (AD′)s,p = (2s+ 1)!!s!2s = (2s+ 1)! This completes
the proof of the claim.

The next step is to consider matrix D
′′ that consists of even rows

and columns of matrix Dn. This submatrix is defined only for n ≥ 1,

D′′ =


3!! 5!! · · · (2m+ 3)!!

5!! 7!! · · · (2m+ 5)!!
... ... . . . ...

(2m+ 3)!! (2m+ 5)!! · · · (4m+ 3)!!

 ,

where m =
⌊
n−1
2

⌋
.

Now, we find a lower-triangular matrix B such that BD′′ is upper
triangular. Namely, we claim that

1 0 0 · · · 0

b1,0 1 0 · · · 0

b2,0 b2,1 1 · · · 0
... ... ... . . . ...

bm,0 bm,1 bm,2 · · · 1

D′′

=


1!× 3 ∗ ∗ · · · ∗
0 3!× 5 ∗ · · · ∗
0 0 5!× 7 · · · ∗
... ... ... . . . ...
0 0 0 · · · (2m+ 1)!× (2m+ 3)

 ,

where bst are given by the formula

bst =
2s+ 3

2t+ 3
ast =

{
(−1

2
)s−t 2s+3

2t+3
(2s+1)!

(2t+1)!(s−t)!
, if 0 ≤ t ≤ s ≤ m,

0, otherwise.

Indeed, similar to the calculation in (5) we find that

(BD′′)s,p == (−1)s (2s+ 3) (2s+ 1)!!
s∑

t=0

(−1)t
(
s

t

)
Np (t) ,

where
Np (t) =

(2(t+ p) + 3)!!

(2t+ 3)!!
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is a polynomial of degree p in t. By applying Lemma 1.8, we find that
(BD′′)s,p = 0 for p < s and

(BD′′)s,s = 2ss! (2s+ 3) (2s+ 1)!! = (2s+ 3) (2s+ 1)!,

which proves the claim.
Combining these two pieces, we find that the determinant of Dn is

given by the formula

det (Dn) =



⌊n
2 ⌋∏

m=0

(2m+ 1)!

2

(n+ 2)!!, if n is odd,⌊n
2 ⌋∏

m=0

(2m+ 1)!

2

(n+1)!!
(n+1)!

, if n is even.

□
Corollary 3.5.

hn =

{
n!(n+ 2), if n is odd,
(n+ 1)!, if n is even.

βn =

{
(n+ 2), if n is odd,

n, if n is even.

Proof: This follows by the direct calculation from the formula for
det (Dn) . □

4. Q polynomials

Let s be real and define the polynomials Q(s) by the formula:

(6) Q(s) = i−nPn(is).

The first ten Qn are shown in Table 3.
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n Qn(x)

0 1
1 x

2 x2 − 3

3 x3 − 5x

4 x4 − 10x2 + 15

5 x5 − 14x3 + 35x

6 x6 − 21x4 + 105x2 − 105

7 x7 − 27x5 + 189x3 − 315x

8 x8 − 36x6 + 378x4 − 1260x2 + 945

9 x9 − 44x7 + 594x5 − 2772x3 + 3465x

Table 3. Qn(x) polynomials

Theorem 4.1 |Properties of Q - polynomials |.
(i) Polynomials Qn(x) satisfy the following recursion:

(7) Qn+1 (x) = xQn (x)− βnQn−1 (x) ,

(ii) Polynomials Qn(x) are orthogonal with respect to a non-negative
measure ν on R.
(iii) The coefficients of every polynomial Qn(x) are real.
(iv) All the zeros of a polynomial Qn (x) are simple and real.
(v) Any two zeros of a polynomial Qn (x) are separated by a zero of
polynomial Qn−1 (x) and vice versa.

Proof. Formula (7) follows from the properties of Pn(x). Claim (ii)
follows by Favard’s theorem, because βn are positive. Claim (iii) is
implied by (i) becase βn are real. Claims (iv) and (v) are implied by
(ii), see Theorem 1.2.2 in Akhieser [1]. □
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Theorem 4.2 |Orthogonality of Q - polynomials |.
The polynomials Qn (x) are monic orthogonal polynomials with respect
to measure ν with density

f(t) =
1√
2π

t2 e−t2/2,

defined on all real line.
Proof. The moments of this measure are m2k+1 = 0 and m2k = (2k +

1)!!. By using these moments, we can calculate the coefficients in the
3-term recurrence relation for orthogonal polynomials related to this
measure. It turns out that these coefficients are the same as for the
polynomials Qn. Since the initial conditions are also satisfied, Qn are
the monic orthogonal polynomials for the measure ν. □

Theorem 4.3 |Relation of the Q- and Laguerre poly-
nomials |.

Q2n(x) = (−2)nn!L(1/2)
n

(x2

2

)
,

Q2n+1(x) = (−2)nn!xL(3/2)
n

(x2

2

)
,

where L
(α)
n (x) denote the Laguerre polynomials.

Proof. The orthogonality relations for the Laguerre polynomials are∫ ∞

0

xαe−xL(α)
n (x)L(α)

m (x) dx = δnmΓ(α + 1)

(
n+ α

n

)
.

After a change of variable in this relations, the claim of the theorem
directly follows from Theorem 1.11. □
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