
Journal of Multivariate Analysis 140 (2015) 377–394

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

On estimation in the reduced-rank regression with a large
number of responses and predictors
Vladislav Kargin ∗

Cambridge University, Department of Pure Mathematics and Mathematical Statistics, Wilberforce Rd,
Cambridge CB3 0WB, United Kingdom

a r t i c l e i n f o

Article history:
Received 25 September 2014
Available online 12 June 2015

AMS subject classifications:
primary 62H20
secondary 62H15
60B20
15B52

Keywords:
Randommatrices
High-dimensional data
Reduced-rank regression
Rank selection
Rank estimation
Tracy–Widom distribution
Factor model

a b s t r a c t

We consider a multivariate linear response regression in which the number of responses
and predictors is large and comparable with the number of observations, and the rank of
the matrix of regression coefficients is assumed to be small. We study the distribution of
singular values for the matrix of regression coefficients and for the matrix of predicted
responses. For both matrices, it is found that the limit distribution of the largest singular
value is a rescaling of the Tracy–Widom distribution. Based on this result, we suggest al-
gorithms for the model rank selection and compare themwith the algorithm suggested by
Bunea, She and Wegkamp. Next, we design two consistent estimators for the singular val-
ues of the coefficient matrix, compare them, and derive the asymptotic distribution for one
of these estimators.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paperwe are concernedwith the reduced rank variant of themultivariate response regressionmodel.We are given
N observations of the predictors Xi ∈ Rp and responses Yi ∈ Rr , which are assumed to be related by the linear regression
model:

Y = XA + U, (1)

where A is an unknown p-by-r matrix and U is a noise matrix. This model is ubiquitous in statistics, signal processing, and
numerical analysis.

On methodological grounds one often postulates that the responses depend only on a small number of factors which are
linear combinations of the predictors. This postulate leads to a model, in which A is assumed to be a low-rank matrix:

A =

s
j=1

θjujv
∗

j , (2)

where

uj ∈ Rp


and {vi ∈ Rr} are two fixed orthonormal vector systems. This model appeared already in Anderson [1],

and it was named reduced-rank regression in Izenman [17]. In some contexts, this model is also known under the names
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simultaneous linear prediction (Fortier [13]) and redundancy analysis (van denWollenberg [34]), both of which assume thatU
has the covariancematrix equal to σ 2I . The reduced-rankmodel has been intensively studied, andmany results are collected
in the monograph by Reinsel and Velu [30].

In this paper, we assume that U has the covariance matrix equal to σ 2I , and we are interested in the situation in which
all three variables, p, r , and N , grow at the same rate.

Assumption A1. It is assumed that as N → ∞, N
p → 1 + λ ≥ 1 and N

r → µ > 0.

It is also useful to define β
def
= limN→∞

p
r = µ/ (1 + λ).

The studies devoted to the reduced-rank regression in this setup are relatively recent and include Bunea, She, and
Wegkamp [9] and Giraud [14].

We address the following questions. First, is it possible to detect that the true matrix A is not zero? If yes, then how do
we estimate the rank and singular values of A?

Our approach to these questions is based on the study of the statistical properties of the standard least squares estimatorA def
= X \ Y ≡


X∗X

−1 X∗Y

and the matrix of fitted responses:Y def
= XA.

By using this approach, we will develop a rank-selection algorithm which performs better than the algorithm from [9]
in a certain range of parameters and is simpler than the algorithm in [38]. In addition, we will develop tools for consistent
estimation of singular values θi. The paper [9] does not address this issue, since its focus is on minimizing the prediction
error, in particular on bounds for E

XA − XA, whereA is an estimator of A and the expectation is over randomness in U .
The rest of the paper is organized as follows. Section 2 describes the major results. Section 3 provides the details of the

proofs. Section 4 recapitulates the results. Appendix provides a proof for the theorem about the limiting distribution of
singular values ofA.
2. Major results

2.1. Tests of the null hypothesis

Let X be a p-by-r real Gaussian matrix: each row is an independent observation from N (0, Σ). Then, an r-by-r matrix
X∗X is said to be aWishart matrixwith distributionWr(Σ, p).

A randomm-by-mmatrix X is said to belong to the (real) Jacobi ensemblewith parameters α1 and α2, if its distribution is
invariant with respect to orthogonal transformations and the distribution of its eigenvalues is given by

f (α1,α2) (λ1, . . . , λm) =
1
c

m
j=1

λ
α1
j (1 − λj)

α2


1≤j<k≤m

λj − λk
 . (3)

The following result is fundamental for the analysis of matricesA andY .
Theorem 2.1. (i) Suppose that U is an N-by-r matrix with i.i.d standard real Gaussian entries, and X is an N-by-p full-rank

matrix (N ≥ p) independent of U. Then the squared singular values of Y def
= X(X \ U) are distributed as the eigenvalues of

the Wishart matrix with distribution Wr(I, p).
(ii) In addition, suppose that X has i.i.d standard real Gaussian entries. Let s2i be the squared singular values of A def

= X \ U and
fi = s2i /(1 + s2i ). Then, the positive fi are distributed as eigenvalues of the Jacobi ensemble with parameters m = min{p, r},
α1 = (|r − p| − 1)/2 and α2 = (N − p − 1)/2.

Proof. The matrixY = X(X \U) is the orthogonal projection of r column vectors of U on the p-dimensional column span of
X . Hence, in an appropriate basis,Y is a block matrix with one block given by a p-by-r matrix with i.i.d. standard Gaussian
entries and another block of (N −p)-by-r matrix of zeros. This proves the first part of the theorem. For the second part, note
that positive eigenvalues ofA∗A = U∗X (X∗X)−2 X∗U have the same distribution as positive eigenvalues of B−1C , where B
and C are independent Wishart matrices.

Indeed, the rank of matrices U∗X(X∗X)−2X∗U and X(X∗X)−2X∗UU∗ is min{p, r}, and their positive eigenvalues are
the same. Let W be an orthogonal N-by-p matrix formed by the eigenvectors of X(X∗X)−2X∗ and such that the matrix
W ∗X(X∗X)−2X∗W is diagonal with positive eigenvalues on the diagonal. These eigenvalues coincide with positive
eigenvalues of the inverse of aWishart matrix, (X∗X)−1, where theWishart matrix has the distributionWp(I,N). Thematrix
W ∗UU∗W is Wishart with distributionWp(I, r).

In addition, matrices W ∗X(X∗X)−2X∗W and W ∗UU∗W are independent because the eigenvalues and eigenvectors of
X(X∗X)−2X∗ are independent. Finally, since similarity transformations do not change eigenvalues, the distribution of
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positive eigenvalues of X(X∗X)−2X∗UU∗ is the same as the distribution of positive eigenvalues of B−1C for two independent
Wishart matrices B and C with distributionsWp(I,N) and Wp(I, r), respectively.

Next, note that the eigenvalues of B−1C are the same as those of F (I − F)−1, where F = (B+C)−1C . Hence the eigenvalues
of B−1C , denoted by li, are related to the eigenvalues of (B + C)−1 C , denoted by fi by the transformation,

li =
fi

1 − fi
. (4)

Then one can use the classical fact that the eigenvalues of (B + C)−1 C are distributed as in (3) with α1 = (|r − p| − 1)/2
and α2 = (N − p − 1)/2. (See Theorem 3.3.1 in Muirhead [25].) �

There are several ways to test the null hypothesis that A = 0. The simplest way is to compute the largest eigenvalue of
Y ∗Y , called lY ,1, and compute

sY ,1 =
lY ,1 − µ(1)

σ (1)
,

where

µ(1)
=

√
N − 1 +

√
r
2

, (5)

σ (1)
=

√
N − 1 +

√
r
  1

√
N − 1

+
1

√
r

1/3
.

If A = 0 and the noise matrix U has i.i.d. standard Gaussian entries, then by Theorem 1.1 in Johnstone [19] sY ,1 converges
in distribution to the Tracy–Widom distribution F1.1Note that this test does not depend on X and that the normality as-
sumption on the entries of U can be significantly relaxed. Indeed, by results of Pillai and Yin [29], the convergence to the
Tracy–Widom distribution holds provided that the entries are independent, have zero mean, unit variance, and subexpo-
nential decay: P{Uij > t} ≤ κ−1 exp{−tκ} for a positive κ and all t > 1. (The first universality result of this type is due to
Soshnikov [32].)

Two other methods to test the null hypothesis are conditional on X . They are based on the singular values of matricesA def
= X \ Y andY def

= XA. Let us define two statistics, sY ,1 and sA,1:

sY ,1
def
=

lY ,1 − µ(2)

σ (2)
,

where lY ,1, is the square of the largest singular value ofY and

µ(2)
=


p − 1 +

√
r
2

, (6)

σ (2)
=


p − 1 +

√
r
  1

√
p − 1

+
1

√
r

1/3
.

Similarly,

sA,1 =
log lA,1 − µ(3)

σ (3)
,

where lA,1 is the square of the largest singular value ofA and

µ(3)
= 2 log tan


φ + γ

2


, (7)

σ (3)
=


16

(N + r − 1)2
1

sin2 (φ + γ ) sinφ sin γ

1/3
,

and the angle parameters γ and φ are defined by

sin2
γ

2


=

min (p, r) − 1/2
N + r − 1

,

sin2


φ

2


=

max (p, r) − 1/2
N + r − 1

.

1 Some quantiles of the Tracy–Widom distribution are: x50% = −1.3, x10% = 0.45, x5% = 0.98, x2% = 1.60, x1% = 2.02, where P (x ≥ xc) = c.
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Fig. 1. The blue solid line shows the cumulative distribution function for the scaled largest singular value. The red dashed line is the Tracy–Widom
distribution TW1 . The parameters are N = 100, p = 66, r = 133. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Theorem 2.2. (i) Suppose that A = 0, Assumption A1 is satisfied, U is a matrix with independent standard Gaussian entries,
and X is a full-rank matrix independent of U. Then the random variable sY ,1 converges in distribution to the Tracy–Widom
distribution.

(ii) In addition, suppose that X has i.i.d. standard Gaussian entries. Then sA,1 converges in distribution to the Tracy–Widom
distribution.

Theorem 2.2 is illustrated in Fig. 1.

Proof. Both claims follow from Theorem 2.1 and Johnstone’s work on the largest eigenvalues of the Wishart and Jacobi
ensembles (specifically, Theorem 1.1 in [19] and Theorem 1 in [20]). �

Corresponding to each of these three tests, we can devise a procedure for the choice of the rank of the model (2):

1. Calculate the statistics sY ,i, sY ,i, or sA,i for the singular values of corresponding matrices.
2. Check howmany of these statistics exceed the 10% quantile of the Tracy–Widom distribution (x10% = 0.45) and take this

number as the rank of the model (2).

This should be compared to the procedure suggested in [9]. The first part of their procedure is to compute lY ,i. Next, they
prescribe to choose the rank of the model equal to the number of statistics lY ,i that exceed a threshold t . This is similar to
our prescription. However, our choice of the threshold is different from the choice in [9]. They suggest either choosing t by
cross-validation or using t = 2(p+ r). We use t = 2(p+ r) to replicate their method in numerical experiments and call this
algorithm BSW (‘‘Bunea–She–Wegkamp’’). Our choice of the threshold is based on the 10-th quantile of the Tracy–Widom
distribution.

It is not guaranteed that any of these algorithms will estimate the rank of the model successfully. First of all, as we will
see later, there is a certain threshold, so that if a true singular value θ is below this threshold then it cannot be estimated
consistently. Second, since Theorem 2.2 is about the null case, hence it is not applicable in the situation with nonzero true
singular values and it does not guarantee that the largest of the remaining singular value estimates is distributed according
to the Tracy–Widom law.

The good news is that if the true singular values exceed the threshold, then Theorem 2 in [27] and Proposition 5.8
in [5] suggest that our Theorem 2.2 can be extended to the non-null case by perturbative methods, and therefore the
distribution of the largest of the remaining singular values ofY orA is indeed Tracy–Widom. (An analogous result also holds
for deformations ofWigner matrices, see Proposition 5.3 in [5] and Theorem 2.7 in [22].) However, if one of the true singular
values is at the threshold (precisely, if it is in a neighborhood of the threshold that shrinks as the matrix size grows), then
the limiting distribution is a deformation of the Tracy–Widom law. For the real-valuedWishart matrices, the full description
of this deformation is still an active research problem [11].

In order to compare the performance of the rank-selection algorithms we run several numerical experiments. Their
results are summarized below.

In the first experiment, we assumed that the null hypothesis is satisfied and A = 0. The number of observations in this
experiment is N = 100, and the number of predictors is p = 25.

Fig. 2 displays the estimated ranks averaged over many simulations of the model. The results show that for the null case
A = 0 the algorithms based on the Tracy–Widom distribution falsely detect about 10% of model realizations as having rank
1 (both in the case p = r = 25 and in the case p = 25 < r = 75). This behavior should be expected since the threshold was
set at the 10-percentile of the Tracy–Widom distribution. In other words, the significance level of the tests is 10%.
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Fig. 2. Comparison of rank selection algorithms. Null hypothesis case: rank s = 0. The entries in the table show the rank estimators averaged over 100
repetitions of the experiment.

Fig. 3. Comparison of rank selection algorithms. Non-null hypothesis case: s = 1, θ = 0.025.

Fig. 4. Comparison of rank selection algorithms. Non-null hypothesis case: s = 10, θ1 = · · · = θ10 = 0.05; the entries in the table show the rank
estimators averaged over 100 repetitions of the experiment.

In contrast, the results of the BSW (‘‘Bunea–She–Wegkamp’’) algorithm change from about 12% of false detections in the
case when p = r = 25 to 2% in the case when p = 25 < r = 75. Hence, in our application of the BSW algorithm, the
proportion of false positives varies depending on parameters. That is, one cannot easily pinpoint the significance level of the
test based on the BSW algorithm.

The results for non-null case with rank s = 1 are shown in Fig. 3. In this experiment, the strength of the signal θ was
chosen to make it difficult but not impossible to detect the signal. As before, N = 100 and p = 25.

The values in Fig. 3 are simulation-based estimates of the expected values of the rank estimators. For our choice of pa-
rameters, inmost repetitions the rank estimator takes the values 0 or 1. Hence, the numbers in this table are approximations
for the power of the test, that is, for the proportion of the times when the test detects the signal when it is in fact present.
(Note, however, that this is only an approximation since the rank estimators can take values greater than 1. In particular,
this explain the value 1.05 in the table.)

For r = 25, the values in Fig. 3 show that the estimated expected values of the rank estimators based on the BSW and the
fitted values algorithms are 0.56 and 0.53, respectively. The estimated expected values for the other two rank estimators
are much smaller. Since the true rank is 1, this finding suggests that the power of the tests based on the BSW and the fitted
values algorithms is larger than for the tests based on the other two rank estimators.

As the number of responses, r , increases, it becomes easier to detect the signal. The best performer for larger r is the
algorithm based on the distribution of the largest singular value of the fitted responses. In contrast, the algorithm based on
the singular values of the coefficient matrix estimatorA detects the signal poorly. The performance of the BSW algorithm
is also not very satisfactory as it appears to be too conservative and biased in favor of the null hypothesis. For example, for
r = 200, the BSW algorithm is outperformed by the simple algorithm based on the singular values of responses, which does
not use any information about the design matrix X .

Finally, we consider the setup, in which A has 10 nonzero singular values, each with value θ = 0.05. The results,
summarized in Fig. 4, are similar to results for one nonzero singular value in Fig. 3. The best estimates are produced by
the BSW algorithm and the algorithm based on fitted responses Y . For small r , the signal detection is difficult and both
algorithms perform roughly similar. For large r , the algorithm based on fitted responses outperform the BSW algorithm.

2.2. Estimation of singular values

2.2.1. Limit distribution of the squared singular values
Recall that the empirical eigenvalue distribution of a square Hermitian r-by-r matrix M is the measure P =

1
r

r
i=1 δλi

where λi are eigenvalues of M and δx is the Dirac measure concentrated on x, that is, for every continuous function f ,
R f δx = f (x).

Theorem 2.3. LetA def
= (X∗X)−1 X∗U andY def

= XA.
(i) Suppose that Assumption A1 is satisfied, U is a matrix with i.i.d. standard Gaussian entries, and X is a full-rank matrix

independent of U. Then, as N → ∞, the empirical eigenvalue distribution of the r-by-r matrix 1
r
Y ∗Y converges weakly

to the Marchenko–Pastur probability measure P(β)

MP with the density defined in (8).
(ii) In addition, suppose that the entries of X are i.i.d. standard Gaussian variables. Then the empirical eigenvalue distribution ofA∗A weakly converges to the probability measure P(λ,β) with the density defined in (10).
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The Marchenko–Pastur measure P(β)

MP is supported on the interval
β − 1

2
,


β + 1
2

and has the density

pβ

MP(x) =
1
2π

1
x


4β − (β + 1 − x)2. (8)

If 0 < β < 1, then the measure P(β)

MP has an additional atom at 0 with mass 1 − β .
The family of probabilitymeasures P(λ,β) is parameterized by λ ≥ 0 and β > 0. The continuous part of P(λ,β) is supported

on the interval [x1, x2]. If λ > 0, then

x1,2 =
1

λ2β


(1 + β) λ + 2 ± 2


λ2β + λ (β + 1) + 1


, (9)

where x1 and x2 correspond to the − and + signs before the square root, respectively. If λ = 0, then x1 = (β − 1)2 / (4β)
and x2 = ∞. In both cases, the density is

p(λ,β)(x) =
1
2π

1
x (x + 1)


− (β − 1)2 + 2β [(1 + β) λ + 2] x − β2λ2x2. (10)

If 0 < β < 1, then the measure P(λ,β) has an additional atom at 0 with mass 1 − β .

Proof. Both parts immediately follow from Theorem 2.1. The first part uses a property of the Wishart random matrices
discovered by Marchenko and Pastur [24] (and independently rediscovered by Jonnson [21] and Wachter [36]).

The second part uses a property of the Jacobi ensemble shown byWachter [37] and Silverstein [31]. In the Appendix, we
give another proof of this property which uses the S-transform from free probability.

Remarks. 1. The theorem is illustrated by a numerical example in Fig. 5.
2. Here is what happens in some special cases:

(a) If λ → ∞ and β is fixed, then both x1 and x2 converge to 0. This is in agreementwith the intuitive notion that the true
matrix AN = 0 can be estimated precisely if the number of observations is large relative to the number of variables
in the model.

(b) If λ → ∞ and β → 0 so that λβ → ξ > 0, then both x1 and x2 converge to ξ−1. Note that ξ = limN→∞ (N/r).
(c) If λ is fixed and β → ∞, then both x1 and x2 converge to λ−1.

In both (b) and (c), the regression will pick up spurious dependencies. In (b), it is because the number of responses is
very large, and in (c), it is because the number of predictors is comparable to the number of observations.

(d) If p = r , thenA is square and one can ask about the distribution of its eigenvalues. By using the methods from
[15,16], the limit distribution of eigenvalues ofA can be recovered from that of its singular values. It turns out that
the limit distribution is supported on the disc |z|2 ≤

1
λ
and has the density

1 + λ

π

dm(z)
(1 + |z|2)2

,

where dm(z) is the Lebesgue measure on the complex plane. After the stereographic projection this measure maps
to the uniform measure on a Riemann sphere’s cap.

This is a generalization of the result for the spherical ensemble of randommatrices,which occurswhenN = p = r ,
and thereforeA = X−1U . For the eigenvalues of this ensemble, it is known that the limit distribution is uniform on
the Riemann sphere after the stereographic projection. (See [23,8,12,33] for more results about this ensemble.)

3. In [33], Tikhomirov considers the spherical ensemble X−1U and finds the limit distribution of its singular values under
rather weak assumptions on the distribution of matrix entries. The basis for the results in [33] is the Gaussian case which
is extended to non-Gaussian matrices by consecutively changing every matrix entry to a Gaussian random variable and
then verifying that the total change in the Stieltjes transform of the eigenvalue distribution is negligible. We conjecture
that the result in Theorem 2.3 can be extended to non-Gaussian matrices in a similar way.

2.2.2. Consistent estimation of singular values
Now, suppose that the truematrix A is from the reduced-rankmodel (2). We are interested to know if the singular values

θi can be estimated consistently.
The estimatorA = (X∗X)−1 (X∗Y ) is an m-by-r matrix that can be written as follows:A = A +


X∗X

−1 X∗U

.
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Fig. 5. The blue line shows the cumulative distribution function of squared singular values in a random realization of the model. The red dashed line is
the limit distribution. The parameters are N = 100, p = r = 66. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

In otherwords,A is the sumof thematrixA and a randommatrix. This randommatrix has a rotationally invariant distribution
by the assumption that both X and U are Gaussian with i.i.d entries. In addition, matrix A has a fixed set of non-zero singular
values θ1 ≥ · · · ≥ θs > 0 and we assume that N ≫ s. In this situation, one can apply the results by Benaych-Georges and
Nadakuditi from [6].

It turns out that the singular values ofA do not converge to that of A as N → ∞. We need to define a correction function,
DA(x), that will map the singular values ofA to consistent estimates of the singular values of A.

Recall that the Stieltjes transform of a probability measure P is an analytic function defined as

G (z) =


P (dt)
z − t

.

Let GA(z) denote the Stieltjes transform for the measure P(λ,β) (from Theorem 2.3). It can be computed as

GA(z) =
1

2z (1 + z)


1 − β + (2 + λβ) z −


(λβz)2 − 2β [λ (1 + β) + 2] z + (β − 1)2


. (11)

(This follows from formula (21) in the Appendix after rescaling by β−1.)
LetGA(x)

def
=


β−1GA(x) +


1 − β−1 1

x


,

and

DA(x)
def
=

1

x

GA

x2
GA


x2
 .

This function has no singularities for real x >
√
x2, (with x2 defined in (9)), and it is increasing on

√
x2, ∞


. The behavior

of the function DA(x) − x for various values of parameters λ and β is illustrated in Fig. 6.
Let

θA
def
= lim

x↓
√
x2
DA(x).

Note that θA ≤ x2. (The threshold is below the upper edge of the support for the limit measure P(λ,β).)

Theorem 2.4. Let σ1 ≥ σ2 ≥ · · · ≥ σs be the first s largest singular values of A = (X∗X)−1 (X∗Y ), where Y = XA + U and
A =

s
j=1 θjujv

∗

j with θ1 ≥ · · · ≥ θs > 0. Suppose Assumptions A1 is satisfied with λ > 0 and X and U are independent matrices
with i.i.d. standard Gaussian entries. For each fixed i, if θi > θA, then almost surely as N → ∞,θi def

= DA (σi) → θi.

If θi ≤ θA, thenσi →
√
x2.

In other words,θi = DA (σi) is a consistent estimator of θi provided that θi > θA, otherwise θi is hidden by spurious
eigenvalues ofA.



384 V. Kargin / Journal of Multivariate Analysis 140 (2015) 377–394

Fig. 6. The function DA(x) − x for various values of parameters. The dashed lines are for λ = 1 and the solid lines are for λ = 0.1. The plot lines start from
x = x2(λ, β) defined in (9).

There is a similar result that usesY instead ofA. Define
DY (x)

def
=

1

x

Gβ

MP


x2
GMP


x2
 ,

where Gβ

MP(x) is the Stieltjes transform of the Marchenko–Pastur distribution with parameter β:

Gβ

MP(z) =
1
2z


1 − β + z −


(1 − β + z)2 − 4z


. (12)

andGβ

MP
def
=


β−1Gβ

MP(x) +

1 − β−1

 1
x


.

Define xu,Y as the upper edge of the support of the Marchenko–Pastur distribution P(β)

MP and θY
def
= limx↓√xu,Y DY (x).

Theorem 2.5. Let Y = X (X∗X)−1 (X∗Y ), where Y = XA + U and A =
s

j=1 θjujv
∗

j with θ1 ≥ · · · ≥ θs > 0. Suppose Assump-
tion A1 is satisfied with λ > 0, and X and U are independent matrices with i.i.d. standard Gaussian entries. Let σi,Y be the first s
largest singular values of Y/

√
r. If θi > θY , then almost surely as N → ∞,θi,Y def

= µ−1/2DY
σi,Y  → θi.

If θi ≤ θY , thenσi,Y →
√
xu,Y .

Remarks. 1. These results are similar in spirit to the results in [3,4,28], which are concerned with the singular values of
sample covariance matrices. In these papers, it was found that if the true covariance matrix has a ‘spike’ that exceeds a
certain threshold, then it will be observed in the spectrum of the sample covariance matrix. Otherwise it will be hidden
among the spurious eigenvalues.

2. The quality of the estimators is illustrated in Figs. 7 and 8. They show that for relatively small values of parameters λ and
β , the threshold θY is smaller than θA and the estimatorθi,Y is preferable toθi,A. For large λ and β the threshold θA can
be smaller than θY . However, the difference is small and in this region the correction term D(x) − x is also small.

3. The proofs of Theorems 2.4 and 2.5 are essentially by combining Theorem 2.3 in this paper and Theorem 2.8 in [6]. We
provide a detailed proof in Section 3 for the convenience of the reader. (The proof of Theorem 2.8 in [6] lacks some details
and has annoying typos.) However, we defer to [6] for details about convergence and continuity issues.

2.2.3. CLT for the estimator of the singular values
Let us define the empirical version of the function GA(x):

GA,N (x) def
=

1
p

p
i=1

1
x − s2i

, (13)
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Fig. 7. Quality of the estimators for the rank-one perturbation. The horizontal axis shows the parameter θ . The red dashed line is the differenceθA − θ and
the blue solid line is the differenceθY − θ . The thresholds are θA = 14.2 and θY = 0.8. (Parameters are N = 500, λ = 0.2, β = 1/2.) (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Contour and surface plots of the difference between the estimator thresholds θA(λ, β) and θY (λ, β).

where si are singular values of the matrix X \ U . Let

GA,N(x) def
=

r
p
GA,N(x) +


1 −

r
p


1
x

(14)

and

DA,N (x) def
=

1

x

GA,N


x2
GA,N


x2
 . (15)

Then Theorem 2.4 holds with DA,N (x) instead of DA (x).

Next, letθ (N) def
= DA,N

σ (N)

, whereσ (N) is the largest singular value of the matrixAN =


X∗

NXN
−1 X∗

NYN

and DA,N is as

defined in (15).

Theorem 2.6. Assume that Y = XA + U with A = θuv∗. Suppose Assumption A1 is satisfied with λ > 0, and X and U are
independent matrices with i.i.d. standard Gaussian entries.

Then
√
r

ω

θ (N)
− θ


,

with ω as defined below in (16), converges in distribution to a standard zero-mean Gaussian random variable.
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Fig. 9. The blue solid line shows the cumulative distribution function for
√
r

ω
(D(σ (N)) − θ). The red dashed line is the standard Gaussian cumulative

distribution function. The parameters are N = 300, λ = 0.2, β = 2, and θ = 9. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Theorem 2.6 is illustrated in Fig. 9.
Let σ be the largest solution of the equation

DA(x) = θ.

Define

κ2
1 = −2σ 2


G′

A


σ 2

+

GA

σ 22 ,

κ2
2 = −

2
β

σ 2
G′

A


σ 2

+
GA


σ 22 ,

τ 2
= −


σ 2G′

A


σ 2

+GA

σ 2 .

Let

κ2
= σ 2 GA


σ 22 κ2

1 + σ 2 GA

σ 22 κ2

2 + 4θ−2τ 2, and

ω =
1
2
θ3κ. (16)

Remark. We conjecture that the statement of the theorem holds true with the estimator D
σ (N)


instead of DN

σ (N)

.

However the proof of this statement runs into some technical difficulties and might require some additional assumption on
the convergence N/m → 1 + λ andm/r → β .

3. Proofs of the main results

3.1. Proof of Theorem 2.4

The basic tool is the following determinantal identity. Let |X | denote the determinant of a matrix X .

Lemma 3.1. Let Ψ and D be an N-by-N and s-by-s matrices, respectively, and let W1 andW2 be an N-by-s and s-by-N matrices,
respectively. Assume that D is invertible. Then,

|tIN − Ψ − W1DW2| = |D| |tIN − Ψ |
D−1

− W2 (tIN − Ψ )−1 W1
 .

Proof. The proof is through a sequence of elementary determinantal identities:

|tIN − Ψ − W1DW2| = |tIN − Ψ |
IN − (tIN − Ψ )−1 W1DW2


= |tIN − Ψ |

Ir − DW2 (tIN − Ψ )−1 W1


= |tIN − Ψ | |D|
D−1

− W2 (tIN − Ψ )−1 W1
 . �
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We apply this lemma to understand how the singular values of a matrix Z are affected if Z is perturbed by a low-rank
matrix A.

Lemma 3.2. Let A = A + Z with A =
s

j=1 θjujv
∗

j . Let Θ = diag (θ1, . . . , θs), and let U and V be an p-by-s and an r-by-s
matrices whose columns are vectors ui and vi, respectively. Let

M (t) def
=


tV ∗


t2Ir − Z∗Z

−1
V , V ∗Z∗


t2Ip − ZZ∗

−1
U

U∗

t2Ip − ZZ∗

−1
ZV , tU∗


t2Ip − ZZ∗

−1
U


−


0 Θ−1

Θ−1 0


. (17)

If t > 0 and |M (t)| = 0, then t is a singular value of A. Conversely, if a singular value of A is different from the singular values
of Z , then it is a zero of the function |M (t)| defined in (17).

Proof. We apply Lemma 3.1 to Ψ =


0 Z
Z∗ 0


, D =


0 Θ

Θ 0


, W1 =


0 U
V 0


, andW2 = W ∗

1 , and we use the identity:
tIp −Z

−Z∗ tIr

−1

=


t

t2Ip − ZZ∗

−1 
t2Ip − ZZ∗

−1
Z

Z∗

t2Ip − ZZ∗

−1
t

t2Ir − Z∗Z

−1


.

Then we gettIp+r −


0 A + Z

A∗
+ Z∗ 0

 = (−1)s
s

i=1

θ2
i

tIp+r −


0 Z
Z∗ 0

 |M (t)| .

Hence, the positive eigenvalues of the matrix


0 A + Z
A∗

+ Z∗ 0


are either positive eigenvalues of the matrix


0 Z
Z∗ 0


or

positive zeros of |M (t)|. Recall that the singular values of matrix A + Z coincide with the positive eigenvalues of matrix
0 A + Z

(A + Z)∗ 0


,

and similarly for the singular values of matrix Z . This proves both claims of the lemma. �

Wewill apply this theorem to Z = X \U, whereU denotes thematrix of noise in the regressionmodel (1) and should not
be confused with matrix U in the definition ofM(t). The crucial observation is that the rotational invariance of Z and Theo-
rem 2.3 imply that the s-by-smatrix tV ∗


t2Ir − Z∗Z

−1 V converges to the scalar matrix tGA

t2

Is provided that t >

√
x2.

By using LemmaA.2, one can also check that thematrix tU∗

t2Ip − ZZ∗

−1 U converges to

β−1tGA


t2

+

1−β−1


t−1

Is.

The off-diagonal blocks ofM (t) converge to zero.
Finally, we use the fact that xIs −Θ−1

−Θ−1 yIs

 =

s
i=1


xy − θ−2

i


and conclude (by continuity properties of the determinantal equation solutions proved in [6]) that if θi > θA then there is a
singular value ofA that converges to the positive solution of the following equation:

tGA

t2
 

β−1tGA

t2

+

1 − β−1 t−1

= θ−2
i .

Since the left hand side equals [DA (t)]−2 by definition, this convergence establishes the first part of Theorem 2.4.
In order to establish the second part, let θ1 ≥ · · · ≥ θk > θA ≥ θk+1 ≥ · · · ≥ θs. Then, by monotonicity of DA(x), if i > k

then for every ε > 0 and sufficiently large N the equation DA(x) = θi does not have roots in the interval (
√
x2 + ε, ∞).

Hence, by Lemma 3.2, the eigenvalues of matrixA can have only k limits greater than
√
x2 + ε. It can also be checked that

the singular values of the matrixA has the same limiting distribution, P(λ,β), as in the null case. (Indeed, a deformation by
a fixed-rank matrix does not affect the empirical distribution of eigenvalues). It follows that the (k + 1)-st, (k + 2)-nd, . . . ,
and sth largest singular values ofAmust converge to

√
x2. �

3.2. Proof of Theorem 2.5

An analogue of Lemma 3.2 holds and establishes the fact that the singular values ofY/
√
r are zeros of |MY (t)|, where

MY (t) = −


0 Θ−1

Θ−1 0


+


tV ∗


t2Ir − Z∗Z

−1
V , r−

1
2 V ∗Z∗


t2IN − ZZ∗

−1
XU

r−
1
2 U∗X∗


t2IN − ZZ∗

−1
ZV , r−1tU∗X∗


t2IN − ZZ∗

−1
XU


,

where Z = r−
1
2 X(X∗X)−1XU, and U is the matrix of noise in the regression model (1). As before, the off-diagonal blocks of

MY (t) converge to −Θ−1. Besides, if t is sufficiently large, then the first diagonal block converges to tGβ

MP(t
2)Is.
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In addition, for sufficiently large t , the limit of the second diagonal block is the scalar matrix atIs, where a is the limit of

N
r
1
p
Tr

N−1X∗


t2IN − ZZ∗

−1
X


. (18)

In order to calculate this limit,we note that thematrices

U/

√
r, U∗/

√
r

and


X/

√
N, X∗/

√
N

converge in distribution

(in the sense of free probability theory) to pairs of non-commutative randomvariables (u, u∗) and (x, x∗), which are free from
each other. Let Px = x(x∗x)−1x∗. This is the orthogonal projection corresponding to xx∗, since Pxxx∗

= xx∗Px = xx∗, P2
x = Px

and P∗
x = Px. Then, the limit of the expectation of (18) is equal to the limit of

N
r

(1 + λ)τ


t2I − Pxuu∗Px
−1

xx∗


, (19)

where τ is the trace in the corresponding free probability space.
In order to handle this expression, we use the following lemma.

Lemma 3.3. Suppose that the pair of variables (a, Pa) and the variable b are free from each other, and suppose that Pa has the
properties Paa = aPa = a and P2

a = Pa. Then

τ

(tI − PabPa)−1a


=

τ(a)
τ (Pa)


−

1 − τ(Pa)
t

+ τ

(tI − PabPa)−1 .

Proof. On both sides we have complex-analytic functions in t (aside of singularities), and we can expand these functions
in powers of t−1. It is enough to show the equality in the region of the complex plane where the resulting series converge,
since for other values of t the equalitywill hold by analytic continuation. Consequently, it is enough to show that the equality
holds term by term in the series. In particular, we need to check that

τ

(PabPa)na


= τ


(PabPa)n

 τ(a)
τ (Pa)

for each integer n ≥ 1. By using the properties of Pa and a, the left hand-side can be written as

τ

Pab . . . Pab  
n times

a

 = τ (bPab . . . Paba) .

Next we use the property that (a, Pa) and b are free, and write:

τ (bPab . . . Paba) =


π∈N C(n)

κπ (b, b, . . . , b)τK(π)(Pa, . . . , Pa, a), (20)

where the sum is extended over all non-crossing partitions of the sequence {1, 2, . . . , n}, K(π) is the Kreweras complement
of the partition π , τK(π) is the multiplicative extension of the trace τ , associated with partition K(π), and κπ denotes the
free cumulant functional associated with partition π . (For additional details and a proof of formula (20), see Theorem 14.4
in [26].)

Let |π | denote the number of blocks in the partition π . It is a fact that |K(π)| = n + 1 − |π |. Then, by multiplicativity of
τK(π), the expression in (20) can be written as

π∈N C(n)

κπ (b, b, . . . , b)τ (Pa)n−|π |τ(a).

We can take τ(a) outside of the sum sign, and a similar calculation shows that

τ

(PabPa)n


= τ (Pa)


π∈N C(n)

κπ (b, b, . . . , b)τ (Pa)n−|π |.

Hence,

τ

(PabPa)na


= τ


(PabPa)n


τ (a) /τ (Pa) . �

By applying this lemma to the expression in (19), we calculate that its limit equals

µGβ

MP


t2

,

where µ = limN→∞
N
r .
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Hence, for sufficiently large t , |MY (t)| converges to
s

i=1


µtGβ

MP


t2
Gβ

MP


t2

− θ−2

i


.

From this, we conclude that for θi > θY , there exists a singular value ofY/
√
r , denoted byσi, such that

µ−1/2DY (σi) → θi

in probability. This is equivalent to the claim in the first part of the theorem. The second part is proved as in Theorem2.4. �

3.3. Proof of Theorem 2.6

Now we are going to prove the central limit theorem for the estimatorθ = D (σ). Recall that we are dealing with the
rank-one perturbation model, in which θ is the singular value of the perturbation andσ is the largest singular value of the
estimatorA = X \ Y . First, we note that the function 1

r

r
i=1

t
t2−s2i

concentrates better than what could be expected if si
were independent.

Lemma 3.4. Let si, i = 1, . . . , r be the singular values of the m-by-r matrix Z = X \ U and x2 be as defined in (9). Then for
every ε > 0 and every t > x2,

r1−ε


1
r

r
i=1

t
t2 − s2i

− E
1
r

r
i=1

t
t2 − s2i


→ 0

in L2.

Proof. The claim of this lemma is a consequence of a CLT for linear eigenvalue statistics. Indeed, the eigenvalues of Z∗Z are
the transformed eigenvalues from the Jacobi ensemble of random matrices (with a smooth transformation (4)). Hence we
can use the results about the linear eigenvalue statistics of the Jacobi ensemble. For example, the results of Dumitriu and
Paquette [10] (specifically their Theorem 3.1) imply that Tr


t2I − Z∗Z

−1 converges to a Gaussian random variable with a

finite variance. Hence, r−ε

Tr

t2I − Z∗Z

−1
− ETr


t2I − Z∗Z

−1


→ 0 in L2. �

Remark. The results of Johansson in [18] (e.g., his Theorem 2.4) suggest that one can use tGA

t2

instead of E 1

r

r
i=1

t
t2−s2i

in the above lemma. However, Johansson’s results are proved under assumption of a fixed potential V , while the potential
in the pdf of the Jacobi ensemble is changing with N . Hence, some additional assumptions on the convergence m/N → λ
and m/r → β might be needed.

Next, we prove a CLT for the matrixM (t).

Lemma 3.5. Assume that Y = XA+U with A = θuv∗. Let MN (t) be the 2-by-2matrix defined in (17), and let GN (t) andGN (t)
be as defined in (13) and (t (14)), respectively. If t > x2 (with x2 defined in (9)), then the random matrix

MN (t) =
√
r

MN (t) −


tGN


t2


−θ−1

−θ−1 tGN

t2


converges in distribution to the matrix
κ1X τZ
τZ κ2Y


,

where X, Y , and Z are independent standard Gaussian random variables, and

κ2
1 = −2t2


G′

t2

+

G

t2
2

,

κ2
2 = −2β−1t2

G′

t2

+
G t22 ,

τ 2
= −


t2G′


t2

+G t2 .

For the proof we rely on Theorem 7.1 in [2] that allows one to compute the distributional limit for the formsn
i,j=1 ui (l) Aijuj


l′

, as n → ∞, for independent, identically distributed K -tuples of real or complex valued random vari-

ables {ui (1) , . . . , ui (K)}, under someadditional assumptions onmatrices

Aij

. The theoremshows that the limit is Gaussian

and provides a formula for the covariancematrix of the limit. This theorem is not directly applicable in our case sincewewill
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have variables ui which are the coordinates of the vector uniformly distributed on a sphere Sn and, therefore, not indepen-
dent. This can be overcome either by a suitablemodification of Theorem 7.1 in [2], or by a trick that represents the uniformly
distributed vector u as a normalization of a Gaussian vector (which is similar to what is done in the proof of Theorem 6.4
in [5]). In the following proof we concentrate on explaining how the variance coefficients are calculated.

Proof of Lemma 3.5. By a suitable modification of Theorem 7.1 in [2], we find that the matrix MN (t) converges in
distribution to a matrix that consists of independent zero-mean Gaussian entries. It remains to compute the variance of
the entries. Let us start with the upper-left diagonal entry ofMN (t), which is tv∗


t2Ir − Z∗Z

−1
v. Because of the rotational

invariance of Z , one can take v uniformly distributed on the sphere Sr . In the basis that diagonalizes Z∗Z , we get

[MN (t)]11 =

r
i=1

t
t2 − s2i

v2
i ,

where si, are singular values of Z and vi are coordinates of vector v. Hence,

E ([MN (t)]11 |Z) =
1
r

r
i=1

t
t2 − s2i

, and

E ([MN (t)]11) = E
1
r

r
i=1

t
t2 − s2i

.

Next we use the total variance formula:

Var
√

r [MN (t)]11


= E

Var

√
rMN (t)


11 |Z


+ Var


E
√

r [MN (t)]11 |Z


.

The second term converges to zero by Lemma 3.4, hence we need only to compute the limit of the first term. We calculate:

E

r [MN (t)]211 |Z


=

3
(r + 2)

r
i=1


t

t2 − s2i

2

+
1

(r + 2)

r
i≠j


t

t2 − s2i


t

t2 − s2j


,

where we used E

v4
i


=

3
r(r+2) and E


u2
i u

2
j


=

1
r(r+2) . Hence,

Var
√

r [MN (t)]11 |Z


=
2
r

r
i=1


t

t2 − s2i

2

−
2
r2

r
i≠j


t

t2 − s2i


t

t2 − s2j


+ O


1
r


→ −2t2


G′

t2

+

G

t2
2

.

In addition, Lemma 3.4 shows that

√
r


[MN (t)]11 −

1
r

r
i=1

t
t2 − s2i


converges in distribution to the same variable as

√
r


[MN (t)]11 − E

1
r

r
i=1

t
t2 − s2i


,

that is, to a zero-mean Gaussian variable with variance −2t2

G′

t2

+

G

t2
2.

Similar argument holds for [MN (t)]22:
√
r

[MN (t)]22 − tGN


t2


converges to a zero-mean Gaussian variable with variance

−2β−1t2
G′


t2

+
G t22 .

Next,

MN (t) + θ−1


12 = u∗


t2Ip − ZZ∗

−1 Zv, where u and v are unit vectors, which are independent and uniformly
distributed on Sp and Sr , respectively. In appropriate coordinates,

MN (t) + θ−1
12 =

p
i=1

ui
si

t2 − s2i
vi.
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The expectation of this term is zero and for the conditional variance we have the following sum:

Var
√

r

MN (t) + θ−1

12 |Z


=
1
p

p
i=1


si

t2 − s2i

2

→


s2

t2 − s2
2 dµ s2

= −

t2G′


t2

+G t2 . �

Corollary 3.6. If t > x2, then the random variable

√
r


|MN (t)| −

tGN

t2


−θ−1

−θ−1 tGN

t2


converges in distribution to a Gaussian random variable with the variance

κ2
= t2

G t22 κ2
1 + t2


G

t2
2

κ2
2 + 4θ−2τ 2,

where κ1, κ2, and τ are as in Lemma 3.5.

Next, by Lemma 3.2, the largest singular value ofA satisfies the equation

|MN (σ1)| = 0.

Let

fN (t) def
= t2GN


t2

GN

t2

− θ−2,

so that by Corollary 3.6

|MN (t)| = fN (t) +
κ

√
r
W + o


r−1/2 ,

whereW is a standard Gaussian random variable. If σ1 denote the largest root of fN (t) = 0, then this implies that
√
r (σ1 − σ1) →


f (−1)
N

′

(0) κW

=
1

f ′

N (σ1)
κW .

Note that our estimator isθ = DN (σ1), where

DN (t) =


1

t2GN

t2

GN

t2
 =


fN (t) + θ−2−1/2

.

Hence
√
r
θ − θ


→ D′

N (σ1)
1

f ′

N (σ1)
κW

= −
1
2


fN (σ1) + θ−2−3/2

κW

= −
1
2
θ3κW . �

4. Conclusion

This paper is about the reduced-rank regression in the multivariate response linear model. We found that if the number
of responses and predictors is large relative to the number of observations, then the singular values of the OLS estimator of
the coefficient matrix do not converge to zero even if the true coefficient matrix is zero. The same observation is true for the
matrix of fitted responses. Instead, the empirical distributions of singular values are converging to some limit distributions
that depend on how numerous the predictors and responses are relative to the number of observations.

In addition, under the null hypothesis A = 0 we found that the scaled largest singular value for these matrices are
distributed in the limit according to the Tracy–Widom distribution. This fact can be used to test whether the true coefficient
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matrix is zero and to estimate the rank of the model. In numerical simulations, we found that one of these rank-selection
algorithms compares favorably with the algorithm suggested by Bunea, She, and Wegkamp in [9].

In the case of the low-rank A ≠ 0, we showed that the singular values of A are detectable if and only if they exceed a
certain threshold. If they do, then the estimated coefficient matrix has singular values outside of the support of the limit
empirical distribution.

Finally, we showed that consistent estimators of the true singular values can be obtained by shrinking the outlier singular
values ofA orY appropriately. We found that the estimation based on singular values ofY is preferable to the estimation
based on that ofA. We have also proved a CLT for the asymptotic distribution of one of the estimators.

Appendix. The limiting distribution of singular values for the coefficient matrix estimator

In this sectionwewill prove the second part of Theorem 2.3 by using the technique of S-transforms from free probability.
(This techniquewas introduced in [35] and generalized in [7] in order to study the spectra of products of infinite-dimensional
operators.) Let the moments of a square N-by-N random matrix A be defined as mk

def
= N−1Tr


Ak

, and let the generating

function formk be denoted as

MA (z) def
=

∞
k=1

mkzk.

The Stieltjes transform of the empirical eigenvalue distribution is

GA (z) =

∞
k=0

mk

zk+1
=

1
z

+
1
z
MA


1
z


and Voiculescu’s S-transform is

SA (u) def
=

u + 1
u

M(−1)
A (u) ,

whereM(−1)
A is the functional inverse ofMA.

If XN is anN-by-p randommatrix with the standard Gaussian entries, andN/p → 1+λ, then it is known that asN → ∞,
the moments of matrices


X∗

NXN

/p converge to the moments of the Marchenko–Pastur distribution with parameter 1+ λ.

This distribution has the S-transform SMP (u) = 1/ (u + 1 + λ).

Lemma A.1. Let ξ be a random variable with the Marchenko–Pastur distribution with parameter 1 + λ ≥ 1. Then, the S-
transform of ξ−1 is

Sξ−1 (u) = λ − u.

Proof. Let F (α)
def
= α −

√
α2 − 1. Then, a calculation of integrals gives the moments of ξ−1:

mk =


t−kdFMP (t) =

√
1 + λ


−1

2
√
1 + λ

k 1
k!
F (k)


2 + λ

2
√
1 + λ


,

and therefore,

Mξ−1 (z) =
1
2


λ − z −


(λ + 2 − z)2 − 4 (1 + λ)


.

Hence,

M(−1)
ξ−1 (u) =

u
u + 1

(λ − u) ,

and

Sξ−1 (u) = λ − u. �

Lemma A.2. Let A be an N-by-p matrix, B be an p-by-p matrix, Z = ABA∗, andZ = BA∗A. Then, the Stieltjes and S-transforms of
matrices Z andZ are related as follows:

GZ (t) =


1 −

p
N

 1
t

+
p
N
GZ (t)

SZ (u) =
u + 1
u +

p
N

SZ

N
p
u


.



V. Kargin / Journal of Multivariate Analysis 140 (2015) 377–394 393

Proof. The moments of matrices Z andZ are related as follows:

mk =
1
N
Tr


ABA∗
k

=
p
N

1
m

Tr


BA∗A
k

=
p
N
mk.

The rest follows from the definitions of the Stieltjes and S-transforms. �

Lemma A.3. Let AN
def
=

X∗

NXN
−1 X∗

NUN . As N → ∞, the S-transform of p
r A

∗

NAN converges to

λ − u/β
u + β

.

Proof. By applying Lemma A.2 to matricesZ = p

X∗

NXN
−1

= p

X∗

NXN
−2 X∗

NXN

and Z = pXN


X∗

NXN
−2 X∗

N , we find that

SZ (u) =
u + 1
u +

p
N

SZ

N
p
u


.

If λ > 1 then the moments of p

X∗

NXN
−1 converge to the moments of the inverse Marchenko–Pastur distribution and

therefore (by Lemma A.1) SZ


N
p u

converges to λ − (1 + λ)u. Therefore, as N → ∞,

SZ (u) → φ1(u) ≡
u + 1

u +
1

1+λ

(λ − (1 + λ) u) .

Next, the matrices r−1

U∗

NUN

converge in distribution to a multiple of the Marchenko–Pastur distribution with param-

eterµ, and one compute (for example, by Lemma A.2) that the S transform of r−1

UNU∗

N


converges to φ2(u) ≡ (µu + 1)−1.

Next, we use the facts that XN and YN are asymptotically free, and that the S-transform of the product of free variables is
the product of their S-transforms. Hence the S-transform of the matrix

p
r
XN

X∗

NXN
−2 X∗

NUNU∗

N

converges to φ1(u)φ2(u). Another application of Lemma A.2 shows that the S-transform of p
r U

∗

NXN

X∗

NXN
−2 X∗

NUN
converges to

λ −


1 + λ

µ


u


u +
µ

1 + λ

−1

. �

Now, by inverting[u/ (u + 1)] S (u), we calculateM (z) and then the Stieltjes transform G(z) for the limit of the variables
p
r A

∗

NAN :

G (z) =
β

2

1 − β +


λ +

2
β


z −


[(1 + β) − λz]2 − 4 (z + β)

z (z + β)
, (21)

where β
def
= µ/(1 + λ). From this we can extract the density function and the support of the limiting probability measure

for p
r A

∗

NAN . The limit distribution for A∗

NAN is obtained by scaling this distribution by β−1. �
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