
Statistics and Probability Letters 81 (2011) 1094–1097

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Relaxation time is monotone in temperature in the mean-field
Ising model
Vladislav Kargin
Department of Mathematics, Stanford University, CA 94305, United States

a r t i c l e i n f o

Article history:
Received 14 October 2010
Received in revised form 24 February 2011
Accepted 1 March 2011
Available online 8 March 2011

Keywords:
Ising model
Glauber dynamics
Spectral gap
Mean-field model
Monotonicity conjecture

a b s t r a c t

In this note we consider the Glauber dynamics for the mean-field Ising model, when all
couplings are equal and the external field is uniform. It is proved that the relaxation time
of the dynamics is monotonically decreasing in temperature.

© 2011 Elsevier B.V. All rights reserved.

Let G = (V , E) be a connected graph with n vertices and let S be the set of all assignments of numbers +1 or −1 to
vertices in V . It is convenient to write an element of S as a vector σ with coordinates σx = ±1, where x ∈ V .

The Gibbs measure π of the Ising model is a probability measure on S:

π(σ) =
1
Z
exp

−
x,y∈V

Jxyσxσy +

−
x∈V

Hxσx


,

where Z is a normalization factor, Jxy are real non-negative numbers (‘‘couplings’’), andHx are real numbers (‘‘external field’’).
It is assumed that Jxy = 0 if x is not connected to y by an edge of the graph.

We use notation ⟨f ⟩ to denote the average of function f with respect to the Gibbs measure:

⟨f ⟩ = Eπ f :=

−
σ∈S

f (σ )π(σ ).

The Glauber dynamics is a reversible Markov chain on S such that the Gibbs measure π is stationary. Specifically, the
transition probabilities are as follows. If assignments σ and σ ′ differ on more than one vertex, then P(σ → σ ′) = 0. If they
differ on vertex x, then

P(σ → σ ′) =
1
n

1
1 + exp(−2σ ′

x(Sx + Hx))
, (1)

where

Sx =

−
y∼x

Jxyσy.
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Finally, if σ ′
= σ , then

P(σ → σ ′) = 1 −

−
x∈V

P(σ → σ x),

whereσ x denote the assignment obtained from σ by changing the assignment at vertex x.
Let L2(S) be the linear space of all functions on S with the scalar product

⟨f , g⟩π := ⟨fg⟩ =

−
σ∈S

f (σ )g(σ )π(σ ),

where π is the Gibbs measure.
Since P is a reversible chain, there is a basis {fα} such that

Pfα = λα fα,

where 1 = λ1 > λ2 ≥ · · · ≥ λn, and

⟨fα, fβ⟩π = δαβ .

The speed of convergence to the equilibrium is governed to a large extent by the spectral gap g := 1−λ2. It is conjectured
that for every connected graph G and every family of non-negative couplings Jxy,

∂λ2

∂ Jxy
≥ 0.

See, for example, Question 2 on p. 299 in Levin et al. (2009). This conjecture has been verified analytically only in the case of
the n-cycle with arbitrary couplings (Nacu, 2003). In this note we verify this conjecture for the case of themean-fieldmodel,
in which all the couplings Jxy are the same and the external field is uniform. In this case formula (1) becomes

P(σ → σ ′) =
1
n

1

1 + exp


−2σ ′

x


J
∑
y∼x

σy + H

 , (2)

where x is the only vertex at which σ and σ ′ are different.
In this case, we prove the following result.

Theorem 1. Let G be a complete graph on n-vertices, let Jxy = J > 0 for all x, y ∈ V , and let Hx = H for all x ∈ V . Let λ2 be the
second-largest eigenvalue of the Glauber–Ising model. Then, it is true that λ2 is increasing in J,

∂λ2

∂ J
≥ 0.

The relaxation time of the Glauber dynamics is defined as trel = (1 − λ2)
−1, and the temperature T is a parameter

proportional to J−1. Hence, Theorem 1 has the following corollary.

Corollary 2. For the mean-field model, the relaxation time ttel is decreasing in T ,

∂trel
∂T

≤ 0.

The Glauber dynamics on the complete graph was studied as early as in Griffiths et al. (1966), where it was shown that
the relaxation time is exponentially growing in the number of vertices provided that the temperature is below a critical
threshold. Recently, this model has been investigated in Levin et al. (2010) and in Ding et al. (2009) from the point of view of
the theory of finite Markov chains. There it was shown that the Diaconis cutoff phenomenon (Diaconis, 1996) holds in this
model when the temperature is above the threshold. In addition, these papers investigated the convergence to equilibrium
near the critical temperature and in the slow-convergence regime.

Proof of Theorem 1

Lemma 3. Let M be the transitionmatrix of a reversibleMarkov chainwith stationary distributionπ . Let M depend on parameter
J , and let λ be an eigenvalue of M with eigenvector f such that ⟨f , f ⟩π = 1. Then,

∂λ

∂ J
=


f ,

∂M
∂ J

f

π

.
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Proof of Lemma 3. We have

λ =

−
i,j

fiπiMijfj.

Hence,

∂λ

∂ J
=

−
i,j


∂ fi
∂ J

πiMijfj + fi
∂πi

∂ J
Mijfj + fiπi

∂Mij

∂ J
fj + fiπiMij

∂ fj
∂ J



= λ
∂

∂ J

−
i

fiπifi


+

−
i,j

fiπi
∂Mij

∂ J
fj

=


f ,

∂M
∂ J

f

π

. �

Hence, it remains to prove that ⟨f , ∂P
∂ J f ⟩π ≥ 0. Instead of proving this inequality for the original Glauber chain, we will

define a reduced chain that has the same second eigenvalue λ2(J) and prove the corresponding inequality for this new chain.
(This chain is called the magnetization chain in Levin et al. (2010) and Ding et al. (2009).)

In order to define this new chain, note that every permutation of vertices induces a linear transformation on L2(S).
Because of the symmetry of the mean-field model, the original Glauber chain has an invariant subspace L that consists
of the functions in L2(S) that are invariant relative to these transformations. The new transition matrixP is defined as
the restriction of the original matrix P to this invariant subspace. In more detail, let f ∈ L and let fk be the value of f on
configurations with k spins +1 and n − k spins −1. We will write f as a vector (f0, f1, . . . , fn). This is essentially a choice of
a basis in L. Then the transition matrixP with respect to this basis is tridiagonal with the entries

Pk,k+1 =
n − k
n

1
1 + e(n−2k−1)2J−2H

,

where 0 ≤ k ≤ n − 1,

Pk,k−1 =
k
n

1
1 + e−(n−2k+1)2J+2H

,

where 1 ≤ k ≤ n, andPkk = 1 −Pk,k−1 −Pk,k+1,

where 0 ≤ k ≤ n and by conventionP0,−1 =Pn,n+1 = 0.

Definition 4. An eigenvector f = {fk}nk=0 of matrixP is called increasing if fk+1 ≥ fk for every k. It is called strictly increasing
if it is increasing and fk+1 > fk for at least one k.

Lemma 5. MatrixP has the same second-largest eigenvalueλ2 as P, and this eigenvalue has a strictly increasing right eigenvector.

This fact was shown in Ding et al. (2009), in the statement and proof of Proposition 3.9.

Lemma 6. The second-largest eigenvalue λ2 of matrixP has a unique increasing eigenvector modulo a multiplication by a scalar.

Proof. Let f = {fk}nk=0 be an increasing eigenvector. We will use the following fact from the proof of Proposition 3.9 in
Ding et al. (2009): if fk−1 = fk, then fk−1 = fk = 0. From this fact it follows that if fk−1 = fk and fk+1 ≠ 0, then

(Pf )k =Pk,k−1fk−1 +Pkkfk +Pk,k+1fk+1 =Pk,k+1fk+1.

Since (Pf )k = λ2fk = 0, hencePk,k+1 = 0. This contradicts the definition ofPk,k+1. Hence fk < fk+1 for every k.
Now, let f and g be two increasing eigenvectors corresponding to λ2. By what we just proved, fk < fk+1 and gk < gk+1

for every k. Let

r = min
k

fk+1 − fk
gk+1 − gk

.

Then h = f − rg is either a zero vector or an increasing eigenvector of λ2 such that hk = hk+1 for some k. The latter is
impossible and we showed that modulo a multiplication by a scalar there exists only one increasing eigenvector of λ2. �
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The symmetry of the model implies that gk := {−fn−k}
n
k=0 is another strictly increasing eigenvector ofP with eigenvalue

λ2. By the previous lemma gk = fk, which means that fk = −fn−k. Since the eigenvector is increasing this implies that fk ≤ 0
for k ≤ n/2 and fk ≥ 0 for k ≥ n/2.

Let us define the following quantities:

sk =
k(n − 2k + 1)

n
1

1 + cosh[(n − 2k + 1)2J − 2H]
,

where 0 ≤ k ≤ n. Note that sk ≥ 0 for k ≤ (n + 1)/2 and sk ≤ 0 for k ≥ (n + 1)/2.
The matrix ∂P/∂ J is tridiagonal with entries

∂

∂ J
Pk,k+1 = sn−k,

∂

∂ J
Pk,k−1 = sk, and

∂

∂ J
Pk,k = −sk − sn−k,

where k changes between 0 and n.
LetP ′ denote ∂P/∂ J . Then we can write:

f0(P ′f )0 = f0sn(f1 − f0),
fk(P ′f )k = fk[−sk(fk − fk−1) + sn−k(fk+1 − fk)], if 1 ≤ k ≤ n − 1,
fn(P ′f )n = fn[−sn(fn − fn−1)].

Since the eigenvector f is increasing, hence all differences fk − fk−1 are non-negative. Moreover, if k ≤ (n − 1)/2, then
fk ≤ 0, sk ≥ 0, and sn−k ≤ 0, which implies that fk(P ′f )k ≥ 0. Similarly, k ≥ (n + 1)/2 implies that fk(P ′f )k ≥ 0. The only
remaining case is when n is even and k = n/2. However, in this case fk = 0 and therefore fk(P ′f )k = 0. It follows that

f ,
∂P
∂ J

f


π

=

n−
k=0

πkfk(P ′f )k ≥ 0.

This completes the proof of Theorem 1. �
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