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Abstract We continue here the study of free extreme values begun in Ben Arous
and Voiculescu (Ann Probab 34:2037–2059, 2006). We study the convergence of the
free point processes associated with free extreme values to a free Poisson random mea-
sure (Voiculescu in Lecture notes in mathematics. Springer, Heidelberg, pp. 279–349,
1998; Barndorff-Nielsen and Thorbjornsen in Probab Theory Relat Fields 131:197–
228, 2005). We relate this convergence to the free extremal laws introduced in Ben
Arous and Voiculescu (Ann Probab 34:2037–2059, 2006) and give the limit laws for
free order statistics.

Mathematics Subject Classification (2000) 46L54 · 62G32

1 Introduction

In classical probability theory, the theory of extreme values for i.i.d. random variables
is elementary and well understood. Recently, a similar theory has been introduced in
the context of free probability theory, in which the role of independent random vari-
ables is played by freely independent operators in a Hilbert space [3]. The asymptotic
behavior of the maximum of N free operators is given in [3], where the maximum is
taken for the spectral order relation on operators [1,13]. The theory emerging is then
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162 G. Ben Arous, V. Kargin

parallel to the classical theory for maxima of i.i.d. random variables. In this paper, we
make the next step in developing this parallel picture. We study the behavior of the full
point process of normalized free extreme values. We show that it converges to a free
Poisson random measure as soon as the normalized free maximum converges. One
should notice that the notion of “free order statistics” is not readily available. Indeed,
the notion of a “second largest statistic” is not at all clear. This difficulty is mirrored
in the nature of the limiting object. Free Poisson random variables are not discrete.
We will see (in Theorem 3 ) that our main convergence theorem (Theorem 1) leads to
results with no classical analogs for order statistics.

The basic element in both classical and free theory of extremes is a probability
measure µ. In the classical case, we take a sequence of i.i.d. random variables Xi ,

distributed according to µ, and introduce their order statistics, i.e., order them in non
increasing order:

X (0) ≥ X (1) ≥ X (2) ≥ · · · ≥ X (n−1),

so that X (0) is the maximum of the n-sample, X (1) the second largest value and so on.
The basic question is to describe the asymptotic behavior of the distribution of these
order statistics once properly normalized, when n tends to ∞.

Let Fn,k denotes the distribution function of the normalized order statistics X (k)−bn
an

,
for well chosen normalization constants an and bn

Fn,k(t) = P

[
X (k) − bn

an
≤ t

]
.

The first question addresses the behavior of the maximum, i.e., the asymptotic behav-
ior of Fn,0. It was shown in the classical works by [7,8], and [9] that there are only
three types of possible limit laws, to which Fn,0 can weakly converge. These laws
(Weibull, Frechet or Gumbel) are called “extreme value distributions”:

Type I : G (x) = exp
(−e−x

)
, −∞ < x < ∞;

Type II : G (x) =
{

0, x ≤ 0,

exp
(−x−α

)
, for some α > 0, x > 0;

Type III : G (x) =
{

exp (− (−x)α) , for some α > 0, x ≤ 0,

1, x > 0.

Moreover, the nature of the max-domain of attraction of these extreme value distri-
butions is well known as well as the possible choices for normalization constants
[11,14].

In the free probability context, a sequence of free self-adjoint operators Xi is taken,
such that each of Xi has the spectral probability distribution µ. In recent work [3], a
maximum operation was defined which maps any n-tuple of self-adjoint operators to
another self-adjoint operator, which is called their maximum. The definition is based
on the so-called spectral order for self-adjoint operators: A � B iff all spectral pro-
jections 1(−∞,t] (A) are greater than or equal to the corresponding spectral projections
1(−∞,t] (B) .
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Free point processes and free extreme values 163

The spectral order is stronger than the usual order on operators, according to which
A ≤ B iff B − A is non-negative definite. The main benefit of the spectral order is
that the set of all self-adjoint operators forms a lattice with respect to this order. In
particular, if S is the set of all operators C such that Ai � C for each of A1, . . . , An ,
then S has a unique minimal element which is called max {A1, . . . , An} . This property
does not hold if self-adjoint operators are considered with respect to the usual order
on operators. Note, however, that the lattice of self-adjoint operators with respect to
the spectral order is not a vector lattice in the sense that A − B � 0 does not imply
that A � B. For a counter-example and other information about the spectral order,
see [13].

By analogy with the classical case, the sequence of normalized maxima is defined
as

max
1≤i≤n

{(Xi − bn I ) /an}

where the maximum here is understood with respect to the spectral order. Then,
F free

n,0 (x) is defined as the spectral distribution function of this normalized maximum.

In [3] the following question is solved: When does the sequence of F free
n,0 converges

weakly?
The answer to this question is very similar to the answer in the classical case: There

are only three possible types of limit laws, and for a given µ, the distributions F free
n,0

can converge to only one of them:

Type I : Gfree (x) =
{

0, x ≤ 0,

1 − e−x , x > 0;

Type II : Gfree (x) =
{

0, x ≤ 1,

1 − x−α, for some α > 0, x > 1;

Type III : Gfree (x) =
⎧⎨
⎩

0, x ≤ −1
1 − (−x)α , for some α > 0, −1 < x ≤ 0,

1, x > 0.

As in the classical case, this allows defining domains of attraction of the free limit
laws. Similar to the results about sums of free operators [6], an important fact is that,
even though the limit laws are different in the classical and free cases, the domains
of attraction are the same as well as the normalization constants! More precisely Fn,0
converges weakly to the extreme value distribution G(x) iff F free

n,0 converges weakly
to Gfree of the same type as G (x) .

This rigid link between classical and free probability theory for extreme values is
thus exactly similar to the analogous results for sums of i.i.d. random variables, as
developed in [6].
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164 G. Ben Arous, V. Kargin

In order to investigate this situation further, let us return to the classical case and
consider the random point process

Nn =
n∑

i=1

δ(Xi −bn)/an .

The next question of classical extreme value theory is to understand the convergence of
this point process. This question is naturally related to the convergence of the distribu-
tions Fn,k . If µ is in the domain of attraction of a classical extreme value distribution
G(x), or equivalently if Fn,0 converges to G(x) for some choice of normalization
constants an and bn , then the point process Nn weakly converges to a Poisson random
measure with intensity measure λ (dx) with λ(x,∞) = − log G(x). Conversely, if
Nn weakly converges to a Poisson random measure with the intensity measure λ (dx) ,

then the distribution of any order statistics Fn,k converges to a limit law G(k) which
is easily computable from λ(dx) or equivalently from G(x), see below or [14].

What is the free analogue of the point process Nn? To motivate our definition, note
that we can think about Nn as a linear functional on the space of bounded measurable
functions: 〈Nn, f 〉 =: ∑n

i=1 f ((Xi − bn) /an) . This functional takes values in the
space of bounded random variables. We will define a free point process analogously.
We begin with a slightly greater generality and associate a free random process to any
triangular array of free random variables.

Let A be the set of densely-defined closed operators affiliated with a von Neumann
algebra A, and let B∞ (R) denote the set of all bounded, Borel measurable functions
f : R → R.

Definition 1 Let Xi,n ∈ A, (i = 1, . . . , n; n = 1, . . .) be a triangular array of freely
independent self-adjoint variables. Then the free point process Mn associated with
the array Xi,n is the sequence of A-valued functionals on B∞ (R), defined by the
following formula:

〈Mn, f 〉 :=
n∑

i=1

f
(
Xi,n

)
.

The triangular array of free variables that we use in applications to free extremes is,
of course, Xi,n = (Xi − bn) /an, where Xi is a sequence of free self-adjoint variables.

We can also define the concept of weak convergence of a free point process as
a weak-∗ convergence of the corresponding functionals. In the classical case, after
a suitable scaling, the point process Nn converges to a Poisson random measure. It
turns out that in the non-commutative case the free point process converges to a free
Poisson random measure, which was recently defined in [15] and [2]. The following
three theorems are the main results of our paper.

Theorem 1 Let G(x) be a classical extreme value distribution, i.e. a Gumbel, Frechet
or Weibull distribution. Let x = inf {x : G (x) > 0} and define a measure λ (dx) on
[x,∞) by the equality λ ((x,∞)) = − log G (x). The following statements are equiv-
alent:
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Free point processes and free extreme values 165

(i) µ belongs to the domain of attraction of the classical extremal limit law G(x),
i.e., for some constants an and bn the distribution Fn,0 converges weakly to
G(x);

(ii) µ belongs to the domain of attraction of the free extremal limit law Gfree, i.e.,
for some constants an and bn the spectral distribution of the normalized free
maximum, F free

n,0 converges weakly to Gfree;
(iii) For some an and bn, the point process Nn weakly converges on (x,∞) to the

Poisson random measure with intensity λ (dx);
(iv) For some an and bn, the free point process Mn weakly converges on (x,∞) to

the free Poisson random measure with intensity λ (dx) .

In case one of the equivalent conditions in Theorem 1 is satisfied, then all the
normalization constants an and bn can be taken to be the same in all four statements.

The equivalences of (i) and (iii) follows from the results in [14] (see, e.g., Section
4.2.2 on page 209), and the equivalence of (i) and (ii) was proved in [3]. Thus, we
only need to prove the equivalence of (i) and (iv).

The equivalence of (i) and (iv) will be seen, in Sect. 3, as a consequence of the
following more general result about convergence of free point processes. Recall that
a measure is called Radon if µ (K ) < ∞ for every compact K .

Theorem 2 Let Xi,n be a triangular array of free, self-adjoint random variables and
let the spectral probability measure of Xi,n be µn . Let λ be a Radon measure on
D ⊆ R. The free point process Mn associated with the array Xi,n converges weakly
on D to a free Poisson random measure M with the intensity measure λ if and only if

nµn (A) → λ (A) (1)

for every Borel set A ⊆ D.

We now want to show what Theorem 1 implies for free order statistics. We begin
by recalling basic facts about the classical theory of extreme values. If the measure
µ is in the domain of attraction of the extreme value distribution G(x), then as men-
tioned above, the convergence of the point process Nn implies easily the convergence
of order statistics. Indeed with the notations introduced above, it is easy to relate the
distribution Fn,k of the normalized kth order statistics to the point process Nn , through
the basic identity:

Fn,k (t) = P

[
X (k) − bn

an
≤ t

]
= P [Nn(t,∞) ≤ k] = E

[
1[0,k](〈Nn, 1(t,∞)〉)

]
.

This implies easily that the distribution Fn,k of the properly normalized order sta-
tistics weakly converges to the distribution

G(k)(t) =
k∑

j=0

e−λ(t,∞) λ(t,∞) j

j ! .
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We now want to see how this translates in the free context. More precisely, let
X1, . . . , Xn be freely independent self-adjoint variables with (possibly different) dis-
tribution functions Fi . Consider Mn the free point process associated with the sequence
Xi and let

Yn (t) := 〈
Mn, 1(t,∞)

〉 = n∑
i=1

1(t,∞) (Xi ) .

Definition 2 For every real k ≥ 0, we say that F free
n,k (t) := E

[
1[0,k] (Yn (t))

]
is the

distribution function of the kth order statistic of the sequence X1, . . . , Xn, and that it
is the kth order free extremal convolution of the spectral distribution functions Fi .

Note that the definition is valid not only for all integer k but also for all non-negative
real k.

One question that immediately arises is whether we can define an operator, for
which the distribution F free

n,k (t) would be a spectral distribution function? The answer
to this question is positive. The condition t ′ ≥ t implies that Yn(t ′) ≤ Yn(t) and
1[0,k](Yn(t ′)) ≥ 1[0,k](Yn(t)). Therefore, as t grows, the operators 1[0,k](Yn(t)) form
an increasing family of projections and we can use this family to construct the required
operator by the spectral resolution theorem.

Definition 3 For every real k ≥ 0, let

Z (k) =
∫

t d1[0,k] (Yn (t)) .

We call Z (k) the kth order statistic of the family Xi .

From the construction it is clear that Fn,k (t) is the spectral distribution function of
the operator Z (k).

In complete analogy with the classical case the limits of these free extremal convo-
lutions can be computed using the limits of free point measures. If G (x) is one of the
classical limit laws, then we use G(−1) (x) to denote the functional inverse of G (x) .

Let

t− (k) = G(−1)

(
exp

[
−
(

1 + √
k
)2
])

,

t0 (k) = G(−1)

(
1

e

)
,

t+ (k) = G(−1)

(
exp

[
−
(

1 − √
k
)2
])

.

Let λ (t) = − log G (t) and pt (ξ) = (2πξ)−1
√

4ξ − (1 − λ (t) + ξ)2.

Theorem 3 Suppose that measure µ belongs to the domain of attraction of a (clas-
sical) limit law G (x) and an, bn are the corresponding norming constants. Assume
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Free point processes and free extreme values 167

that Xi are free self-adjoint variables with the spectral probability measure µ and let
F free

n,k (t) denote the distribution of the kth order statistic of the family (Xi − bn) /an,

where i = 1, . . . , n. Then, as n → ∞, the distribution F free
n,k (t) converges to a limit,

F(k) (t) , which is given by the following formula:

F(k)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if t < t−,∫ k

(1−√
λ(t))

2 pt (ξ) dξ, if t ∈ [
t−, t0

]
,

1 − λt + ∫ k

(1−√
λ(t))

2 pt (ξ) dξ, if (t0, t+
]
,

1 − λ (t) 1[0,1) (k) , if t > t+.

It turns out that in the particular case of the 0-order free extremal convolutions, their
limits coincide with the limits discovered in [3] (see Definition 6.8 and Theorems 6.9
and 6.11):

F I
(0) (t) = (

1 − e−t) 1(0,∞) (t) ;
F I I

(0) (t) =
(

1 − 1

tα

)
1(1,∞) (t) ; and

F I I I
(0) (t) = (

1 − |t |α) 1(−1,0) (t) + 1[0,∞) (t) ,

where α is a positive parameter.
While we were mainly motivated by trying to extend the classical probabilistic

phenomena to the setting of free probability, it is worth mentioning that the theory of
free extreme values is directly related to natural operations on random matrices (see
the recent preprint [4]). The results of this paper can easily be translated in the context
of [4].

The rest of the paper is organized as follows. Section 2 gives a brief introduction
to free probability theory. Section 3 proves Theorem 1 using Theorem 2. Section 4
details the definition of the convergence of free point process and proves Theorem 2.
And Sect. 5 proves Theorem 3.

2 Preliminaries

2.1 Free independence

Definition 4 A W ∗-probability space is a pair (A, E) , where A is a von Neumann
algebra of bounded linear operators acting on elements of a complex separable Hilbert
space and E is a faithful normal trace that satisfies the condition E(I ) = 1. Operators
affiliated with algebra A are called non-commutative random variables, or simply
random variables, and the functional E is called the expectation.

If P (dλ) is the spectral resolution associated with a normal operator A, then we
can define a measure µ (dλ) = E (P (dλ)) . It is easy to check that µ is a probabil-
ity measure supported on the spectrum of A. We call this measure, µ, the spectral
probability measure associated with operator A and expectation E .
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168 G. Ben Arous, V. Kargin

The most important concept in free probability theory is that of free independence
of non-commutative random variables. Let a set of r.v. A1, . . . , An be given. With
each of them we can associate an algebra Ai , which is generated by Ai and A∗

i ; that
is, it is the weak topology closure of all polynomials in variables Ai and A∗

i . Let Ai

denote an arbitrary element of algebra Ai .

Definition 5 The algebras A1, . . . ,An (and variables A1, . . . , An that generate them)
are said to be freely independent or free, if the following condition holds:

E
(

Ai(1) . . . Ai(m)

) = 0,

provided that E
(

Ai(s)
) = 0 and i(s + 1) �= i(s) for every s.

For more information about non-commutative probability spaces and free operators
we refer the reader to Sections 2.2–2.5 in the book [16] by Voiculescu, Dykema and
Nica.

If X and Y are two free self-adjoint random variables with spectral probabilities
measures µ and ν respectively, then we denote the spectral probability measure of
X + Y as µ � ν, and call it the free additive convolution of µ and ν.

2.2 Free Poisson random variables

Let X be a self-adjoint operator that has the so-called free Poisson distribution with
parameter (“intensity”) λ. The continuous part of this distribution is supported on the
interval [(1 − √

λ)2, (1 + √
λ)2] and the density is

pλ (x) =
√

4x − (1 − λ + x)2

2πx
.

In addition, if λ < 1, then there is also an atom at zero with the probability weight
1−λ. We call such an operator X a (non-commutative) Poisson random variable with
intensity λ and size 1.

The sum of two freely independent Poisson random variables of intensities λ1 and
λ2 is again a Poisson random variable of intensity λ1 +λ2 (see, for example, a remark
on page103 in [10]).

If we scale a non-commutative Poisson random variable by a, then we get a vari-
able, which we call a scaled (non-commutative) Poisson random variable of intensity
λ and size a.

Non-commutative Poisson random variables arise when we convolve a large num-
ber, N , of Bernoulli distributions that put probability λ/N on 1 and probability 1−λ/N
on 0. The following result is well-known, see [10,12], or [15].

Proposition 1 Suppose µn, (n = 1, 2, . . .) is a sequence of Bernoulli distributions,
such that µn ({1}) ∼ λ/n and µn ({0}) = 1 − µn ({1}) . Define νn as follows:

νn = µn � · · · � µn︸ ︷︷ ︸
ntimes

.

Then νn weakly converges to the free Poisson distribution with intensity λ and size 1.
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2.3 Free Poisson random measure

Definition 6 Let (�,B, ν) be a measure space, and put

B0 = {B ∈ B : ν (B) < ∞} .

Let further (A, E) be a W ∗-probability space, and let A+ denote the cone of positive
operators in A. Then a free Poisson random measure (fPrm) on (�,B, ν) with values
in (A, E) is a mapping M : B0 → A+, with the following properties:

(i) For any set B in B0, M (B) is a free Poisson variable with parameter ν (B) .

(ii) If r ∈ N, and B1, . . . , Br ∈ B0 are disjoint, then M (B1) , . . . , M (Br ) are free.
(iii) If r ∈ N, and B1, . . . , Br ∈ B0 are disjoint, then M(∪r

j=1 B j ) = ∑r
j=1 M(B j ).

The existence of a free Poisson measure for arbitrary spaces (�,B, ν) and (A, E)

was shown in [15] and a different proof was given in [2].
Let f be a real-valued simple function in L1 (�,B, ν) , i.e, suppose that it can be

written as

f =
r∑

i=1

ai 1Bi ,

for a system of disjoint Bi ∈ B0. Then we define the integral of f with respect to a
Poisson random measure M as follows:

∫
�

f d M =
r∑

i=1

ai M (Bi ) .

It is possible to check that this definition is consistent. Moreover, as it is shown in [2],
this concept can be extended to a larger class of functions:

Proposition 2 Let f be a real-valued function in L1 (�,B, ν) and suppose that sn is
a sequence of real valued simple B-measurable functions, satisfying the condition that
there exists a positive ν-integrable function h (θ) , such that |sn (θ)| ≤ h (θ) for all n
and θ. Suppose also that limn→∞ sn (θ) = f (θ) for all θ Then integrals

∫
�

sn d M
are well-defined and converge in probability to a self-adjoint (possibly unbounded)
operator I ( f ) affiliated with A. Furthermore, the limit I ( f ) is independent of the
choice of approximating sequence sn of simple functions.

The resulting functional I ( f ) is defined for all real valued functions f in
L1 (�,B, ν) and is called the integral with respect to the free Poisson random mea-
sure M . It possesses all the usual properties of the integral: additivity, linear scaling,
continuity, etc.
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3 Proof of Theorem 1

As was noted in Introduction, only the equivalence of (i) and (iv) needs a proof. The
equivalence of (i) and (iv) can be reduced to a problem about convergence of free point
processes. Indeed, let µn (A) = µ (an A + bn) . Then (i) is equivalent to the statement
that nµn (A) → λ (A) for all Borel sets A ⊂ (x,∞) .

Indeed, suppose that µ is in the domain of attraction of G (x) , and let F (x) denote
the distribution function of the measure µ. Then

Fn (an x + bn) → G (x) ,

For every x ∈ (x,∞) , G (x) is positive, hence we can take logarithms and get

n log F (an x + bn) → log G (x) ,

which is equivalent to

n (1 − F (an x + bn)) → − log G (x) ≡ λ ((x,∞)) .

Consequently,

nµn ((x,∞)) → λ ((x,∞)) ,

from which we conclude that nµn (A) → λ (A) for all Borel sets A ⊂ (x,∞) .

By reversing the steps of this argument we obtain the reverse implication: If
nµn (A) → λ (A) for all Borel sets A ⊂ (x,∞) , then µ is in the domain of attraction
of G (x), and (i) holds.

Therefore the equivalence of (i) and (iv) follows from Theorem 2 if we take
(Xi − an) /bn as the triangular array Xi,n .

4 Proof of Theorem 2

4.1 Weak convergence

In this section, we define precisely the mode of convergence of free point measures
that we use. It corresponds to the weak convergence of point processes in the classical
case.

Let D be a Borel subset of R and let F∞
K (D) denote the space of bounded, Borel

measurable functions that have compact support on D.

Definition 7 We say that a free point process Mn converges weakly on D to a free
Poisson random measure M, which is defined on (D,B, λ) and takes values in A, if
for every function f ∈ F∞

K (D) the following convergence holds:

〈Mn, f 〉 d→
∫
R

f d M.
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Free point processes and free extreme values 171

Sometimes we also need to speak about convergence with respect to a class of
functions, which is different from F∞

K (D).

Definition 8 We say that a free point process Mn converges weakly with respect to a
class of functions F to a free Poisson random measure M, if for every function f ∈ F
the following convergence holds:

〈Mn, f 〉 d→
∫
R

f d M.

We will prove Theorem 2 by considering initially the convergence of free point
processes Mn with respect to the class of simple functions (i.e., finite sums of indica-
tor functions), and then approximating functions from a more general class by simple
functions.

4.2 Convergence with respect to simple functions

Let S (D) be the class of simple functions on D ⊂ R, i.e., the class of finite sums of
indicator functions of Borel sets belonging to D.

Proposition 3 Let Xi,n be a triangular array of free, self-adjoint random variables
and let the spectral probability measure of Xi,n be µn . Let λ be a Radon measure on
D ⊆ R. If

nµn (A) → λ (A)

for each Borel set A ⊂ D, then the free point process Mn associated with the array
Xi,n converges weakly with respect to S (D) to a free Poisson random measure M
with the intensity measure λ.

Before proving this proposition, we derive some auxiliary results.

Lemma 1 Suppose Xi,n is an array of free and identically distributed random vari-
ables with the spectral measure µn . Let nµn (A) → λ(A) < ∞ as n → ∞. Let
Zi,n = 1A(Xi,n). Then as n → ∞, the sum Sn = ∑n

i=1 Zi,n converges in distribution
to a free Poisson random variable with intensity λ (A) .

Proof Note that Zi,n are projections with expectation µn (A) and they are free. There-
fore,

∑n
i=1 Zi,n is the sum of free projections and we can use Proposition 1 to infer

the claim of the lemma. ��
As the next step to the proof of Proposition 3 we need to check that if Borel sets Ak

are disjoint, then the sums Sk = ∑n
i=1 1Ak

(
Xi,n

)
are asymptotically free with respect

to growing n.

Recall the definition of the asymptotic freeness: Let (Ai , Ei ) be a sequence of non-
commutative probability spaces and let Xi and Yi be two random variables in Ai . Let
also x and y be two free operators in a non-commutative probability space (A, E).
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172 G. Ben Arous, V. Kargin

Definition 9 The sequences Xi and Yi are called asymptotically free if the sequence of
pairs (Xi , Yi ) converges in distribution to the pair (x, y) . That is, for every ε > 0 and
every sequence of k -tuples (n1, . . . , nk) with non-negative integers n j , there exists
such i0 that for i ≥ i0, the following inequality holds:

∣∣Ei
(
Xn1

i Y n2
i , . . . , Xnk−1

i Y nk
i

)− E
(
xn1 yn2 , . . . , xnk−1 ynk

)∣∣ ≤ ε.

At the cost of more complicated notation, this definition can be generalized to the
case of more than two variables.

Lemma 2 Let P(k)
i,n , (where n = 1, 2, . . . ; i = 1, . . . , n, and k = 1, . . . , r) be pro-

jections of dimension λ(k)/n. Assume that for each n, algebras Ai generated by sets{
P(k)

i,n

}r

k=1
are free. Also assume that for each n and i, the projections P(k)

i,n are orthog-

onal to each other, i.e., P(k)
i,n P(k′)

i,n = 0 for every pair k �= k′. Let S(k)
n = ∑n

i=1 P(k)
i,n .

Then as n → ∞, the sequences S(k)
n converge in distribution to freely independent

variables S(k) that have free Poisson distributions with parameters λ(k), respectively.
In particular, the sequences S(k)

n are asymptotically free with respect to growth in n.

Proof The fact that each of the sequences S(k)
n converge in distribution to a variable

S(k) that has a free Poisson distribution is clear from Proposition 1. The essential part
is to prove that asymptotic freeness holds. This claim is a direct consequence of Spei-
cher’s multidimensional limit theorem (see, for example, Theorem 13.1 in the book
[12] by Nica and Speicher). Indeed, we need to prove that all mixed free cumulants of
the limit are zero. By Speicher’s theorem, this is equivalent to the statement that the
following limits are zero:

lim
n→∞ nE

(
P(k1)

1,n P(k2)
1,n . . . P(ks )

1,n

)
= 0.

Here k1, . . . , ks is an arbitrary s-tuple with the property that it has a pair of distinct
coordinates, i.e., ki �= k j . However, the fact that these limits are zero is clear from the

assumption that the projections P(k)
i,n are orthogonal to each other. ��

Now we can proceed to the proof of Proposition 3.

Proof Let f = ∑r
k=1 ck1Ak (x) , where Ak are disjoint Borel sets. Using the assump-

tion that nµn (Ak) → λ (Ak) and Lemma 1, we can find a free Poisson random
measure M such that

n∑
i=1

1Ak

(
Xi,n

) d→ M (Ak) =
∫
R

1Ak (x) M (dx)

as n → ∞. Indeed, it is enough to take a Poisson random measure M with the intensity
measure λ.
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In addition, by Lemma 2, sums Sk = ∑n
i=1 1Ak (Xi,n) become asymptotically free

for different k as n grows. Since M (Ak) are free by the definition of the free Poisson
measure, this implies that

r∑
k=1

ck

n∑
i=1

1Ak

(
Xi,n

) d→
r∑

k=1

ck M (Ak) =
r∑

k=1

ck

∫
R

1Ak (x) M (dx) .

as n → ∞. Therefore,

n∑
i=1

f
(
Xi,n

) d→
∫
R

f (x) M (dx) ,

where we used the additivity property of the integral with respect to a free Poisson
random measure (see [2], Remark 4.2(b)). ��

4.3 Convergence with respect to bounded, Borel measurable functions with compact
support

The goal of this section is to prove our main Theorem 2.
Consider a bounded, Borel measurable, compactly supported function f : D → R,

such that 0 ≤ f ≤ 1. (A more general case of a function f, which satisfies C1 ≤ f ≤
C2, can be treated similarly.) For positive integers N = 1, 2, . . . , and k = 1, . . . , N ,

define the set

A(N )
k =

{
x ∈ supp ( f ) : k − 1

N
< f (x) ≤ k

N

}
.

The sets A(N )
k are disjoint, measurable, and have finite λ-measure. Their union is D.

We define lower and upper approximations to the function f as follows:

l N (x) =
N∑

k=1

k − 1

N
1

A(N )
k

(x) ,

and

uN (x) =
N∑

k=1

k

N
1

A(N )
k

(x) ,

We note that:

(i) l N (x) ≤ uN (x) ;
(ii) l N (x) is an increasing sequence of functions;

(iii) uN (x) is a decreasing sequence of functions, and
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(iv) limN→∞ l N (x) − uN (x) = 0 uniformly in x .

The functions l N (x) and uN (x) are simple: l N (x) = ∑N
i=1 c(N )

k 1
A(N )

k
(x) and

uN (x) = ∑N
i=1 d(N )

k 1
A(N )

k
(x) . Note also that supk(d

(N )
k − c(N )

k ) = 1/N converges

to zero as N → ∞.

Let us drop for convenience the superscript N when we consider it as fixed, and
simply write l (x) = ∑N

i=1 ck1Ak (x) and u (x) = ∑N
i=1 dk1Ak (x) , where Ak are

disjoint Borel-measurable sets. By Proposition 3, as n → ∞,

n∑
i=1

l
(
Xi,n

) d→
N∑

k=1

ck Mk,

where Mk are freely independent Poisson random variables with intensities λk =
λ (Ak). Let Fl (x) denote the distribution function of

∑N
k=1 ck Mk .

Similarly,

n∑
i=1

u
(
Xi,n

) d→
N∑

k=1

dk Mk,

and we denote the distribution function of
∑N

k=1 dk Mk as Fu (x).
Let F f,n denote the distribution function of

∑n
i=1 f (Xi,n) and let F f be one of the

limit points of this sequence of distribution functions.

Proposition 4 F f is a distribution function and Fu (x) ≤ F f (x) ≤ Fl (x) for every x .

Proof We will infer this from Lemma 3 below and its Corollary. This lemma is a par-
ticular case of Weyl’s eigenvalue inequalities for operators in a von Neumann algebra
of type I I1. If FA (x) is the spectral distribution function of a self-adjoint operator
A, then we define the eigenvalue function θA (t) = inf {x : FA (x) ≥ 1 − t} . The
function θA (t) is non-increasing and right-continuous. Intuitively, it can be thought
of as a “sequence of eigenvalues” of A, indexed in decreasing order by parameter t.

Let us use notation θA (t − 0) to denote limε↓0 θA (t − ε) . Then the following
generalization of Weyl inequalities holds:

Lemma 3 If A and B are two bounded self-adjoint operators from a W ∗-probability
space A and if B is non-negative definite, then

θA (t) ≤ θA+B (t) ≤ θA (t) + ‖B‖ , and

θA (t − 0) ≤ θA+B (t − 0) ≤ θA (t − 0) + ‖B‖ .

Corollary 1 If B ≥ 0, then µA+B � µA, that is, FA+B (x) ≤ FA (x) for each x .
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Proof of Lemma 3 These results easily follow from an inequality in [5] which states
that if (a − ε, a) ⊂ [0, 1], (b − ε, b) ⊂ [0, 1] , and a + b ≤ 1, then

a+b∫
a+b−ε

θA+B (t) dt ≤
a∫

a−ε

θA (t) dt +
b∫

b−ε

θB (t) dt. (2)

��
By Corollary 1, for each n the distribution F f,n is between the distribution functions

of
∑n

i=1 u(Xi,n) and
∑n

i=1 l(Xi,n). As n grows, these two sequences of distribution
functions approach Fu (x) and Fl (x) , respectively. Therefore, every limit point of
F f,n is between Fu and Fl . The claim that F f is a distribution function follows from
the fact that both Fu and Fl are distribution functions. ��
Now we want to show that F (N )

u (x) approaches F (N )
l (x) as N grows.

Recall that the Levy distance between two distribution functions is defined as fol-
lows:

dL (FA, FB) = sup
x

inf {s ≥ 0 : FB (x − s) − s ≤ FA (x) ≤ FB (x + s) + s } .

We can interpret this distance geometrically. Let 
A be the graph of function FA,

and at the points of discontinuity let us connect the left and right limits by a (vertical)
straight line interval. Call the resulting curve 
̃A. Similarly define 
̃B . Let d be the
maximum distance between 
̃A and 
̃B in the direction from the south-east to the
north-west, i.e., in the direction which is obtained by rotating the vertical direction by
π/4 counter-clockwise. Then dL (FA, FB) = d/

√
2.

Proposition 5 Let K be the sum of intensities of freely independent Poisson random
variables Mk and let Fl (x) and Fu (x) be distribution functions of

∑N
k=1 ck Mk and∑N

k=1 dk Mk Then

dL (Fl , Fu) ≤
(

2K + 3
√

K + 1
)

sup
1≤k≤N

(dk − ck) .

Remark In the proof of Theorem 2, the finiteness of K will be ensured by the assump-
tions that measure λ is Radon and that f has a compact support.

For the proof of this proposition we need two lemmas. Lemma 4 provides a bound
on the norm of the sum of scaled Poisson random variables in terms of the sizes of
these variables, and Lemma 5 relates the Levy distance between two random variables
to the norm of their difference.

Lemma 4 Let Mi , (i = 1, . . . , r) be freely independent Poisson random variables,
which have intensities λi , and let bi be non-negative real numbers. Assume that
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∑r
i=1 λi ≤ K and let b = sup1≤i≤r bi . Then

∥∥∥∥∥
r∑

i=1

bi Mi

∥∥∥∥∥ ≤ b
(

2K + 3
√

K + 1
)

.

Proof Let Xi be free self-adjoint random variables that have zero mean. Then by an
inequality from [17]:

∥∥∥∥∥
r∑

i=1

Xi

∥∥∥∥∥ ≤ max
1≤i≤r

‖Xi‖ +
√√√√ r∑

i=1

Var (Xi ).

If Yi are free self-adjoint random variables with non-zero mean, and Xi = Yi −E (Yi ) ,

then the previous inequality implies that∥∥∥∥∥
r∑

i=1

Yi

∥∥∥∥∥ ≤
∣∣∣∣∣

r∑
i=1

E (Yi )

∣∣∣∣∣+
∥∥∥∥∥

r∑
i=1

Xi

∥∥∥∥∥
≤
∣∣∣∣∣

r∑
i=1

E (Yi )

∣∣∣∣∣+ max
1≤i≤r

d (Yi ) +
√√√√ r∑

i=1

Var (Yi ), (3)

where d (Yi ) is the diameter of the support of Yi .

We will apply this inequality to Yi = bi Mi and estimate each of the three terms on
the right-hand side of (3) in turn:

(1) Since E (Mi ) = λi , and
∑

λi ≤ K , therefore
∑r

i=1 bi E (Mi ) ≤ bK .

(2) The diameter of the support of bi Mi is less or equal to bi (1 + √
λi )

2 ≤ b(1 +
2
√

K + K ).

(3) Since Var (Mi ) = λi , therefore
√∑r

i=1 Var (bi Mi ) ≤ b
√

K .

In sum,
∥∥∑r

i=1 bi Mi
∥∥ ≤ b(2K + 3

√
K + 1). ��

Lemma 5 Let A and B be two bounded self-adjoint operators from a W ∗-probability
space A and assume that B − A ≥ 0. Then

dL (FA, FB) ≤ ‖B − A‖ .

Proof Let FA and FB be distribution functions, and θA and θB be the corresponding
eigenvalue functions. Then we claim that

dL (FA, FB) ≤ sup
0≤t≤1

|θA (t) − θB (t)| . (4)

Indeed, let the graphs of functions θA and θB be denoted as �A and �B, respectively.
Connecting the left and right limits at the points of discontinuity gives us the curves
�̃A and �̃B . It is easy to see that these curves can be obtained from curves 
̃A and
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̃B (i.e., the graphs of FA (x) and FB (x) with connected limits at the points of dis-
continuity) by rotating them around the point (0, 1) counter-clockwise by the angle
π/2 and then shifting the result of the rotation by vector (0,−1) . It follows that the
distance d, which was used in the definition of the Levy distance can also be defined
as the maximum distance between �̃A and �̃B in the direction from the south-west to
the north-east, i.e., in the direction which is obtained by rotating the vertical direction
by π/4 clockwise.

Since θA (t) and θB (t) are non-increasing functions, therefore

d ≤ √
2 sup

0≤t≤1
|θA (t) − θB (t)| .

This implies dL (FA, FB) ≤ sup0≤t≤1 |θA (t) − θB (t)| .
Inequality (4) and Lemma 3 imply the statement of the lemma. ��
Now we can prove Proposition 5:

Proof of Proposition 5 Let X = ∑N
k=1 (dk − ck) Mk . By Lemma 4,

‖X‖ ≤ b(2K + 3
√

K + 1), where b = sup1≤k≤N (dk − ck) and K is the sum of
the intensities of Mk . By Lemma 5, this implies that dL(Fl , Fu) ≤ b(2K +3

√
K +1).

��
Using Proposition 5, we can proceed to the proof of Theorem 2. By Proposition 3,

we know that if N is fixed and n → ∞, then

n∑
i=1

l N (Xi,n
) d→

N∑
k=1

c(N )
i M

(
A(N )

k

)
,

and

n∑
i=1

uN (Xi,n
) d→

N∑
k=1

d(N )
i M

(
A(N )

k

)
,

where M is a free Poisson random measure with intensity λ (dx) . Let the distributions
of the right-hand sides be denoted as Fl N and FuN .

By Corollary 1 (p. 15), Fl N is a decreasing sequence and FuN is an increasing
sequence of distribution functions. In addition, Fl N (x) ≥ FuN (x) for every N and x .

Since the sum of intensities of variables M
(

A(N )
k

)
is less than λ (D) < ∞ by assump-

tion, therefore Proposition 5 is applicable and we can conclude that the Levy distance
between Fl N and FuN converges to zero as N → ∞. Consequently, these two distri-
butions (weakly) converge to a limit distribution function as N → ∞.

Moreover, by the definition of the integral with respect to a free Poisson random
measure, this limit equals the distribution function of

∫
f (x) M (dx) .

In addition, by Proposition 4 every limit point of the sequence of F f,n is between
Fl N and FuN for every N , and therefore the sequence of F f,n also converges to the
distribution function of

∫
f (x) M (dx) . ��

This completes the proof of Theorem 2.
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5 Proof of Theorem 3

Recall that we defined the distribution of a free order statistic in the following way.
Let X1, . . . , Xn be freely independent self-adjoint random variables and let Xi have
the spectral distribution functions Fi . Let

Yn (t) =
n∑

i=1

1(t,∞) (Xi ) .

Definition 2 For every real k ≥ 0, we say that Fn,k (t) =: E
[
1[0,k] (Yn (t))

]
is the

distribution function of kth order statistic of the sequence X1, . . . , Xn, and that it is
the kth order free extremal convolution of distribution functions Fi .

It is straightforward to check that in the case of commutative random variables, this
definition gives the distribution function of the usual (�k� + 1)-order statistic.

In the non-commutative case, we need to check that this is a consistent definition,
and that Fn,k (t) is indeed a probability distribution function for each k ≥ 0.

It is easy to see that Fn,k (t) is non-decreasing in t. Indeed, let t ′ ≥ t. Then
for each i, 1(t ′,∞) (Xi ) ≤ 1(t,∞) (Xi ), and therefore, Y

(
t ′
) ≤ Y (t) . It follows that

1[0,k]
(
Y
(
t ′
)) ≥ 1[0,k] (Y (t)) , and therefore Fn,k

(
t ′
) ≥ Fn,k (t) .

This function is also right-continuous in t . Consider a sequence tm ↓ t. First,

note that 1(tm ,∞) (Xi )
d→ 1(t,∞) (Xi ). Second, since operators 1(t,∞) (Xi ) are freely

independent for different i, this implies that Y (tm)
d→ Y (t) as tm ↓ t . Indeed, the

operators Y (tm) and Y (t) are uniformly bounded (‖Y (tm)‖ ≤ n and ‖Y (t)‖ ≤ n),
and the moments of the distribution of Y (tm) converge to the corresponding moments
of the distribution of Y (t) .

Third, let the spectral probability distribution functions of Y (tm) and Y (t) be
denoted as Gm (x) and G (x) , respectively. Then E

[
1[0,k] (Y (tm))

] = Gm (k) and
E
[
1[0,k] (Y (t))

] = G (k) . Since Gm (k) ≡ Fn,k (tm) , and G (k) ≡ Fn,k (t) , there-
fore we aim to prove that Gm (k) → G (k) as m → ∞ for all k. The convergence

Y (tm)
d→ Y (t) means the convergence of the moments of the spectral probability

measures of operators Y (tm) and Y (t) , which implies weak convergence of these
measures because the measures have uniformly bounded support. This implies that
Gm (k) → G (k) as m → ∞, for all points k at which the probability distribution
function G (k) is continuous. We will prove that, moreover, even if G (x) has a jump at
x = k, then the sequence Gm (k) still converges to G (k) . At this point of the argument,
it is essential that tm converges to t from above and therefore Gm (k) ≥ G (k) .

Indeed, by seeking a contradiction, suppose that Gm (k) does not converge to G (k) .

Then, take ε such that (i) Gm (k) − G (k) > ε for all m, and take k′ > k such that
(ii) k′ is a point of continuity of G (x) , and (iii) G

(
k′) − G (k) < ε/2. Such k′

exists because G (x) is a spectral probability distribution function and therefore it is
right-continuous. Since Gm (k) is increasing, we conclude from (i), (ii), and (iii) that
Gm

(
k′) − G

(
k′) > ε/2 for all m. But this means that Gm (x) does not converge

to G (x) at a point of continuity of G (x) , namely, at k′. This is a contradiction,
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and we conclude that Gm (k) converges to G (k) for all k. This means that Fk (t) is
right-continuous in t.

Finally, as t → ∞, 1(t,∞) (Xi )
d→ 0. Therefore Y (t)

d→ 0, and 1[0,k] (Y (t))
d→ I.

Hence Fn,k (t) → 1 as t → ∞, and we conclude that Fn,k (t) is a valid distribution
function.

Consider now the special case when k = 0. In this case Fn,0 (t) is the dimension
of the nill-space of Yn (t) , which equals to the dimension of the intersection of the
nill-spaces of 1(t,∞) (Xi ) . It is easy to see that this coincides with the definition of
the free extremal convolution of the distribution F, which was introduced in [3].

Now let us investigate the question of the limiting behavior of the distributions
Fn,k (t) when n → ∞. The limits are described in Theorem 3.

Proof of Theorem 3 For each n we re-define:

Yn (t) =
n∑

i=1

1(t,∞)

(
Xi − bn

an

)
= 〈

Mn, 1(t,∞)

〉
,

where Mn is the free point process associated with the triangular array (Xi − bn) /an .

The bracket 〈Mn, 1(t,∞)〉 converges in distribution to a random variable Ct , which
is a free Poisson random variable with the intensity λ (t) = − log G (t) . Then, in order
to calculate the limit of Fn,k (t) for n → ∞, we only need to calculate E1[0,k] (Ct ) ,

that is, the distribution function of Ct at k. Let us denote the distribution function of
Ct as Ht (x) ,

For k < 0, we have Ht (k) = 0. For k = 0,

Ht (0) =
{

1 − λ (t) , if λ (t) ≤ 1,

0, if λ (t) > 1.

For k > 0,

Ht (k) =

⎧⎪⎪⎨
⎪⎪⎩

Ht (0) , if k <
(
1 − √

λ (t)
)2

,

Ht (0) + ∫ k

(1−√
λ(t))

2 pt (ξ) dξ, if k ∈
[(

1 − √
λ (t)

)2
,
(
1 + √

λ (t)
)2
]
,

1 if k >
(
1 + √

λ (t)
)2

.

where

pt (ξ) =
√

4ξ − (1 − λ (t) + ξ)2

2πξ
.

Then, we need to compute F(k) (t) , which is Ht (k) considered a function of t
for a fixed k. Let λ−1 (x) denote the solution of the equation λ(t) = x . (That is,
if G(−1) (x) is the functional inversion of the limit distribution function G (t) , then
λ−1 (x) = G(−1)(e−x ).)

123



180 G. Ben Arous, V. Kargin

Then, for k = 0:

F(k) (t) =
{

0, if t ≤ λ−1 (1) ,

1 − λ (t) , if t > λ−1 (1) .

For k ∈ (0, 1):

F(k) (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if t < λ−1
((

1 + √
k
)2
)

,

∫ k

(1−√
λ(t))

2 pt (ξ) dξ, if t ∈
[
λ−1

((
1 + √

k
)2
)

, λ−1 (1)

]
,

1 − λ (t) + ∫ k

(1−√
λ(t))

2 pt (ξ) dξ, if

(
t ∈ λ−1 (1) , λ−1

((
1 − √

k
)2
)]

,

1 − λ (t) , if t > λ−1
((

1 − √
k
)2
)

.

For k ≥ 1, we have:

F(k) (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if t < λ−1
((

1 + √
k
)2
)

,

∫ k

(1−√
λ(t))

2 pt (ξ) dξ, if t ∈
[
λ−1

((
1 + √

k
)2
)

, λ−1 (1)

]
,

1 − λ (t) + ∫ k

(1−√
λ(t))

2 pt (ξ) dξ, if

(
t ∈ λ−1 (1) , λ−1

((
1 − √

k
)2
)]

,

1, if t > λ−1
((

1 − √
k
)2
)

.

Combining these cases, we obtain the following equation:

F(k) (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if t < λ−1
((

1 + √
k
)2
)

,

∫ k

(1−√
λ(t))

2 pt (ξ) dξ, if t ∈
[
λ−1

((
1 + √

k
)2
)

, λ−1 (1)

]
,

1 − λ (t) + ∫ k

(1−√
λ(t))

2 pt (ξ) dξ, if

(
t ∈ λ−1 (1) , λ−1

((
1 − √

k
)2
)]

,

1 − λ (t) 1[0,1) (k) , if t > λ−1
((

1 − √
k
)2
)

.

��

Example Distributions from the domain of attraction of Type II extremal value law

Consider the case of convergence to the Type II extremal value law, when the con-
stants an and bn are chosen in such a way, that the limit law is G (x) = exp

(−x−ν
)

for x > 0.Then we can conclude that the limit distribution of the k order statistic is
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Fig. 1 Distributions of free kth order extreme statistics. The horizontal axis is for t , the vertical axis is
for corresponding probabilities F(t). The figure was computed for the extreme value distribution of type
II with the parameter v = 2. The bold solid line is for k = 0, the thin solid line is for k = 0.5, the dashed
line is for k = 1, and the dotted line is for k = 2

given as follows:

F(k) (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if t <
(

1 + √
k
)−2/ν

,∫ k

(1−t−ν/2)
2 pt (ξ) dξ, if t ∈

[(
1 + √

k
)−2/ν

, 1

]
,

1 − t−ν + ∫ k

(1−t−ν/2)
2 pt (ξ) dξ, if t ∈

(
1,

((
1 − √

k
)2
)−1/ν

]
,

1 − t−ν1[0,1) (k) , if t >

((
1 − √

k
)2
)−1/ν

,

where

pt (ξ) =
√

4ξ − (
1 − t−ν + ξ

)2

2πξ
.

We illustrate this result for some particular values of ν and k.

Consider k = 0. Then

F(0) (t) =
{

0, if t < 1,

1 − t−ν, if t ≥ 1.

This is the Type 2 (“Pareto”) limit distribution in Definition 6.8 of [3].
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The distributions of k order statistics for different values of k are illustrated in
Fig. 1.

It is interesting to note that if k > 1, then for all sufficiently large t, F(k) (t) = 1.

This can be interpreted as saying that the scaled k order statistic is guaranteed to be
less than t0 for a sufficiently large t0. In another interpretation, this result means that
for our choice of scaling parameters an and bn and for every k > 1, if t is sufficiently
large, then

∥∥∥∥∥
n∑

i=1

1(ant+bn ,∞) (Xi )

∥∥∥∥∥ < k

for all large n.

A similar situation occurs in the classical case if the initial distribution (i.e. the
distribution of Xi ) is bounded from above. In this case the limit distribution is also
bounded from above. In contrast, in the free probability case this situation occurs even
if the initial distribution is unbounded from above. Our previous example shows that
this situation occurs even if the initial distribution has heavy tails.
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