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Abstract This paper establishes necessary and sufficient conditions for the sequence
of products of freely independent unitary operators to converge in distribution to the
uniform law on the unit circle.
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1 Introduction

Suppose X is a unitary n-by-n matrix. Then X has n eigenvalues, which are all located
on the unit circle. If we give each eigenvalue a weight of n−1, then we can think about
the distribution of these eigenvalues as a probability distribution supported on n points
of the unit circle. More generally, if X is a unitary operator in a finite von Neumann
algebra, then we can define a spectral probability distribution of X,which is supported
on the unit circle (see, e.g., Sect. 1.1 in [6]).

If we have several unitary operators X1, . . . , Xn , then it is natural to ask about the
spectral distribution of their product. In general, we cannot determine this distribution
without more information about relations among operators X1, . . . , Xn . However,
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604 V. Kargin

if X1, . . . , Xn are infinite-dimensional and, in a certain sense, in a general position
relative to each other, then the spectral distribution of their product is computable. The
idea of a general position was formalized by Voiculescu in his concept of freeness of
operators (see [10,11], and a textbook by [6]). If operators X1, . . . , Xn are free and
unitary and their spectral probability distributions are µ1, . . . , µn, respectively, then
the distribution of their product is determined uniquely. This distribution is called the
free multiplicative convolution of measuresµ1, . . . , µn and denoted asµ1 � · · ·�µn .

What can we say about the asymptotic behavior of µ(n) =: µ1 � · · · � µn, as n
increases to infinity? In particular, what are necessary and sufficient conditions on µi

that ensure that µ(n) converges to the uniform distribution on the unit circle?
To answer this question, let us define the expectation with respect to the measure

µi . This is a functional that maps functions analytic in a neighborhood of the unit
circle to complex numbers

Eµi f =:
∫

|ξ |=1

f (ξ) dµi (ξ) .

If unitary operator Xi has the spectral probability distribution µi , then we will also
write

E f (Xi ) =: Eµi f.

In particular, E Xi denotes
∫
|ξ |=1 ξdµi (ξ) . Then the answer is given by the following

theorem:

Theorem 1 Suppose {Xi }∞i=1 are free unitary operators with spectral measures µi .

The measuresµ(n) of the products�n =: X1, . . . , Xn converge to the uniform measure
on the unit circle if and only if at least one of the following situations holds:

(i) There exist two indices i �= j such that E Xi = E X j = 0;
(ii) There exists exactly one index i such that E Xi = 0, and

∏n
k=i+1 E Xk → 0 as

n → ∞;
(iii) There exists exactly one index i such that Xi has the uniform distribution;
(iv) E Xk �= 0 for all k, and

∏n
k=1 E Xk → 0 as n → ∞.

In other words, convergence ofµ(n) to the uniform law implies that
∏n

k=1 E Xk→0,
and the only case when the reverse implication fails is when E Xi = 0 for exactly one
Xi , the measure µi is not uniform, and

∏n
k=i+1 E Xk � 0 as n → ∞. Note that

cases (ii) and (iii) above are not exclusive. It may happen that both µi is uniform and∏n
k=i+1 E Xk → 0 as n → ∞. In this case, both (ii) and (iii) hold, andµ(n) converges

to the uniform law.
This theorem can be thought of as a limit theorem about free multiplicative convo-

lutions of measures on the unit circle. There is some literature about traditional
multiplicative convolutions of measures on the unit circle, or more generally, about
convolutions of measures on compact groups. For the unit circle, this investigation
was started by [8]. Then it was continued by [7], who studied compact groups, and [2]
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A limit theorem for products of free unitary operators 605

and [14], who both considered the case of commutative finite groups. These resear-
chers found an important necessary condition for convergence of convolutions to the
uniform law. This condition requires that there should be no normal subgroup such that
the convolved measures are supported entirely in an equivalence class relative to this
subgroup. This condition is sufficient if summands are identically distributed. If they
are not, then there are some sufficient and necessary conditions, which are especially
useful if the group is cyclic. A textbook presentation with further references can be
found in [4].

Recent investigations of convolutions on groups are mostly concerned with the
speed of convergence of convolved measures to the uniform law. For a description of
progress in this direction, the reader can consult surveys in [1] and [9].

It turns out that free convolutions converge to the uniform law under much weaker
conditions than usual convolutions. As an example, consider the distributions that
are concentrated on −1 and +1. Let measure µk put the weight pk on +1. Then
usual convolutions remain concentrated on −1 and +1, and therefore they have no
chance to converge to the uniform distribution on the unit circle. In contrast, we
will show that free convolutions do converge to the uniform law, provided that either∏n

k=k0
(2pk − 1) → 0 for arbitrarily large k0, or there exist two indices i and j such

that pi = p j = 1/2.
The rest of the paper is organized as follows. Section 2 provides the necessary

background. In Sect. 3 we outline the proof. Section 4 derives some auxiliary results
that will be used in the proof. Section 5 proves the main result (Theorem 1). Section 6
derives the key estimate used in the proof. And Sect. 7 concludes.

2 Definitions and background

Definition 2 A non-commutative probability space is a pair (A, E) , where A is a
unital C∗-algebra of bounded linear operators acting on a complex separable Hilbert
space and E is a linear functional from A to complex numbers. The operators from
algebra A are called non-commutative random variables, or simply random variables,
and the functional E is called the expectation.

The linear functional E is assumed to satisfy the following properties (in addition
to linearity): (a) E(I ) = 1; (b) E(A∗) = E(A); (c) E(AA∗) ≥ 0; (d) E(AA∗) = 0
implies A = 0; and (e) if An → A then E (An) → E (A), where convergence of
operators is in norm.

If P (dλ) is the spectral resolution associated with a unitary operator A, then we
can define a measure µ (dλ) = E (P (dλ)) . It is easy to check that µ is a probability
measure supported on the unit circle. We call this measure µ, the spectral probability
measure associated with operator A and expectation E .

The most important concept in free probability theory is that of free independence
of non-commuting random variables. Let a set of r.v. A1, . . . , An be given. With each
of them we can associate an algebra Ai , which is generated by Ai ; that is, it is the
closure of all polynomials in variables Ai and A∗

i . Let Ai denote an arbitrary element
of algebra Ai .
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606 V. Kargin

Definition 3 The algebras A1, . . . ,An (and variables A1, . . . , An that generate them)
are said to be freely independent or free, if the following condition holds:

ϕ
(

Ai(1) . . . Ai(m)
) = 0,

provided that ϕ
(

Ai(s)
) = 0 and i(s + 1) �= i(s).

For more information about non-commutative probability spaces and free operators
we refer the reader to Sects. 2.2—2.5 in the book by [13].

We will use two results regarding the free operators, which we cite without proofs.
The first one is formula (2.2.3) on p. 44 in [6].

Proposition 4 Let A1, . . . ,Am be free sub-algebras of A, and let A1, . . . , An be a
sequence of random variables, Ak ∈ Ai(k), such that i(k) �= i(k + 1). Then

E (A1 . . . An) =
n∑

r=1

∑
1≤k1<···<kr ≤n

× (−1)r−1 E
(

Ak1

)
. . . E

(
Akr

)
E
(

A1 . . . Âk1 . . . Âkr . . . An
)
, (1)

where ˆ denotes terms that are omitted.

Remark Note that on the right-hand side the expectations are taken of the products
that have no more than n − 1 terms. So a recursive application of this formula reduces
computation of E (X1, . . . , Xn) to a polynomial in the moments of the individual
variables.

The second result is the Voiculescu multiplication theorem. To formulate it we need
some additional definitions.

Define the ψ-function of a bounded random variable X as

ψX (z) =:
∞∑

k=1

E
(

Xk
)

zk . (2)

If X is a unitary operator with the spectral measure µ, then we can write

ψµ (z) =
∫

|ξ |=1

1

1 − ξ z
dµ (ξ)− 1.

It is very useful to note that the ψ-function is related to the Poisson transform of
the measure µ. Indeed, since

Re
1

1 − ξ z
= 1 − r cos (ω − θ)

1 − 2r cos (ω − θ)+ r2 ,
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A limit theorem for products of free unitary operators 607

where ξ = e−iθ and z = reiω, therefore,

Re
1

1 − ξ z
= 1

2
+ π P (r, ω − θ)

where P (r, θ) is the Poisson kernel

P (r, θ) = 1

2π

1 − r2

1 − 2r cos θ + r2 .

Recall that the Poisson transform of a measure µ supported on the unit circle is
defined as

Uµ (z) =:
π∫

−π
P (r, ω − θ) dµ (θ) ,

where z = reiω. (Here we have identified measures on the unit circle and on the
interval [−π, π): µ (dθ) = µ {ξ : |ξ | = 1 and arg ξ ∈ dθ}). Hence,

Uµ (z) = 1

π
Re ψ (z)+ 1

2π
. (3)

Let ψ−1
X (u) denote the functional inverse of ψX (z) in a neighborhood of z = 0,

whereψX (z) is as defined in (2). (This inversion is possible provided that E (X) �= 0.)
Define also

SX (u) = u + 1

u
ψ−1

X (u) .

Theorem 5 [Voiculescu] Suppose X and Y are bounded free random variables. Sup-
pose also that E (X) �= 0 and E (Y ) �= 0. Then

SXY (z) = SX (z) SY (z) .

The original proof can be found in [12]. A simpler proof was given by [5]. Using
this theorem, it is possible to compute the free convolution of two measures, µ1 and
µ2. First, we can compute their ψ-functions, ψµ1 and ψµ2 . Then we invert them
and obtain the S-functions, Sµ1 and Sµ2 . Their product is the S-function of the free
convolution, Sµ1�µ2 , and we can compute ψµ1�µ2 by inversion. This determines
the Poisson transform of µ1 � µ2, from which we can determine the measure itself.
(For the one-to-one relation of Poisson transforms and corresponding measures, see
Theorem I.3.1 on p. 15 and a comment on p. 20 in [3].)
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608 V. Kargin

3 Outline of the proof

Let �n denote the partial products: �n = X1, . . . , Xn . We denote E (Xi ) as ai ,

and E (�n) as a(n). First, note that it is enough to consider the case when all ai

are real and non-negative. Indeed, for an arbitrary sequence of real constants θn, the
sequence of operators eiθn�n converges in distribution to the uniform law if and only
if the sequence �n converges in distribution to the uniform law. (Indeed, if, say, �n

does not converge in distribution to the uniform law, then we can find an integer k

such that
∣∣∣∫ 2π

0 eikθµ(n) (dθ)
∣∣∣ � 0, where µ(n) denotes the measure of �n .But then∣∣∣∫ 2π

0 eikθeiθnµ(n) (dθ)
∣∣∣ =

∣∣∣∫ 2π
0 eikθµ(n) (dθ)

∣∣∣ � 0, and this implies eiθn�n does not

converge in distribution to the uniform law.) Therefore if ai = E (Xi ) is not real and
positive, then we can replace Xi with e−i arg ai Xi without affecting the convergence
of �n .

We divide the analysis into the following cases:

Case I a(n) � 0.
Case II a(n) → 0, and there are at least two indices, i and j, such that ai = a j = 0.

Case III a(n) → 0, and for all i, ai > 0.
Subcase III. 1 lim inf ai = 0.
Subcase III. 2 lim inf ai = a > 0.

Case IV a(n) → 0, and there exists exactly one index i, such that ai = 0.
We will show that without loss of generality we can assume in this case that
a1 = 0, and ak > 0 for all k > 1.

Subcase IV. 1 X1 has the uniform distribution.
Subcase IV. 2 X1 does not have the uniform distribution, and∏n

k=2 an → 0 as n → ∞.

Subcase IV. 3 X1 does not have the uniform distribution, and∏n
k=2 an � 0 as n → ∞.

We will show that �n does not converge to the uniform law if and only if
either Cases I or IV.3 holds.

4 Auxiliary lemmas

We will need to perform functional inversions. A useful tool for doing this is Lagrange’s
formula.

Lemma 6 [Lagrange’s inversion formula] Suppose that (a) f is a function of a com-
plex variable z, which is analytic in a neighborhood of z = 0, (b) f (0) = 0, and (c)
f ′ (0) = a �= 0. Then the functional inverse of f (z) is well defined in a neighborhood
of 0, and the Taylor series of the inverse is given by the following formula:

f −1 (u) = u

a
+

∞∑
k=2

[
1

k
resz=0

1

f (z)k

]
uk,
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A limit theorem for products of free unitary operators 609

where resz=0 denotes the Cauchy residue at 0. In addition,

f −1 (u) = u

a
+

∞∑
k=2

⎡
⎣ 1

2π ik

∮

γ

dz

f (z)k

⎤
⎦ uk,

where γ is a circle around 0, inside which f has only one zero.

For a proof see Sect. 7.32 in [15].
We will also use the lemmas below:

Lemma 7 Suppose A and B are free unitary operators, |E (A)| ≤ a and |E (B)| ≤ b.
Then for all integer k ≥ 1,∣∣∣E

[
(AB)k

]∣∣∣ ≤ Mk max (a, b)

for certain constants Mk, which depend only on k.

Proof If we expand E
[
(AB)k

]
using Proposition 4, then we can observe that each term

in the expansion contains either E (A) or E (B) as a separate multiple. The remaining
multiples in this term are ≤ 1 in absolute value; therefore, we can bound each term
by max (a, b) . The number of terms in this expansion is bounded by a constant, Mk .

Therefore,
∣∣E [(AB)k

]∣∣ is bounded by Mk max (a, b). 	

In the following lemmas we use the fact that the sequence of probability measures

µi , supported on the unit circle, converges to the uniform law if and only if all their
moments converge to 0, that is, iff for each k ≥ 1,

∫
|ξ |=1 ξ

kdµi (ξ) → 0 as i → ∞.

For completeness we give a proof of this result.
Let us define c(i)k =: ∫|ξ |=1 ξ

kdµi (ξ) . Note that for a fixed i, c(i)k are coefficients
in the Taylor series of ψi (z), i.e., the ψ-function of the measure µi . 	

Lemma 8 Let µi be a sequence of measures supported on the unit circle. If for each
k the coefficients c(i)k → 0 as i → ∞, then ψi (z) → 0 uniformly on compact subsets
of the open unit disc.

Proof Let 
 be a compact subset of the open unit disc, and let 
 ⊂ Dr , where Dr

denotes a closed disc with the radius r < 1. Fix an ε ∈ (0, 1) . Then we can find such
a k0 that ∣∣∣∣∣∣

∞∑
k=k0

c( j)
k zk

∣∣∣∣∣∣ < ε/2

for all z ∈ Dr and all j. Indeed,
∣∣∣c( j)

k

∣∣∣ ≤ 1, and therefore,

∣∣∣∣∣∣
∞∑

k=k0

c( j)
k zk

∣∣∣∣∣∣ ≤ rk0

1 − r
,

so we can take k0 to be any integer greater than or equal to log(ε (1 − r) /2)/ log r .
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610 V. Kargin

Given k0, we choose a j0 so large that for all j > j0 and all k < k0, we have∣∣∣c( j)
k

∣∣∣ < ε/ (2k0) . This is possible because by assumption for each k coefficients c( j)
k

converge to zero as j → ∞, and we consider only a fixed finite number of possible k.
consequently,

∣∣∣∣∣
k0−1∑
k=1

c( j)
k zk

∣∣∣∣∣ ≤
k0−1∑
k=1

∣∣∣c( j)
k

∣∣∣ < ε/2

for every j > j0 and all z ∈ Dr . Therefore,

∣∣∣∣∣
∞∑

k=1

c( j)
k zk

∣∣∣∣∣ < ε

for every j > j0 and all z ∈ Dr . Therefore, ψ j (z) → 0 uniformly on Dr , and
therefore on
. Since
 was arbitrary, we have proved that ψ j (z) → 0 uniformly on
compact subsets of the unit disc. 	


The fact that ψ j (z) → 0 implies that the Poisson transforms of measures µ j

converge to 1
2π , and therefore µ j → ν, where ν is the uniform measure on the unit

disc. Indeed, we only need to invoke the following result:

Proposition 9 If Poisson transforms Uµ j (z) → 1/ (2π) uniformly on compact sub-
sets of the unit disc, then µ j weakly converges to ν, where ν is the uniform probability
measure on the unit circle.

Proof This proposition directly follows from Theorem I.3.1 on p. 15 in [3], adapted
to the case of measures on the unit disc. 	

Lemma 10 Suppose {An}∞n=1 is a sequence of unitary operators that converges in
distribution to the uniform law. Let {Bn}∞n=1 be another sequence of unitary operators,
and let the operator Bn be free of the operator An for every n. Then the sequence of
products Bn An converges in distribution to the uniform law. Also, the sequence An Bn

converges to the uniform law.

Proof Let a(n)k =: E
(
(An)

k) . By assumption, for each fixed k, the moment a(n)k → 0
as n → ∞. If we represent E

(
(Bn An)

k) as a polynomial in individual moments of
Bn and An , then all terms of this polynomial contain at least one of the moments
a(n)i , i ≤ k, which are perhaps multiplied by some other moments. All of these other
moments are less than 1 in absolute value. Therefore, we can write the following
estimate:

∣∣∣E
(
(Bn An)

k
)∣∣∣ ≤ M ′

k max
i≤k

{
a(n)i

}
,

where M ′
k is the number of terms in the polynomial. If k is fixed and n is growing,

then the assumption that An converges in distribution to the uniform law implies that
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A limit theorem for products of free unitary operators 611

maxi≤k

{
a(n)i

}
converges to zero. Therefore, all moments of Bn An converge to zero as

n → ∞, and therefore, by Lemma 8 and Proposition 9, the sequence Bn An converges
in distribution to the uniform law. A similar argument proves that An Bn converges in
distribution to the uniform law. 	

Lemma 11 Suppose that B is a unitary operator, {An} is a sequence of unitary ope-
rators, B is free from each of An, E (B) �= 0, and the sequence An does not converge
to uniform law. Then the sequence of products B An does not converge to the uniform
law.

Proof The condition that the sequence An does not converge to the uniform law means
that for some fixed k the sequence of kth moments of An does not converge to zero
as n → ∞. Let k be the smallest of these indices. By selecting a subsequence we can
assume that

∣∣E (Ak
n

)∣∣ > α > 0 for all n. Consider E
(
(B An)

k)

E
(
(B An)

k
)

= [E (B)]k E
(

Ak
n

)
+ · · · ,

The number of the terms captured by . . . is finite and depends only on k. Each of
these terms includes at least one of E

(
Ai

n

)
where i < k, and other multipliers in this

term are less than 1 in absolute value. Therefore, each of these terms converges to
zero. Hence, for any ε > 0, there exist such N that for all n > N , the sum of the
terms captured by . . . is less than ε in absolute value. Take ε = |E (B)|k α/2. Then
for n > N , we have

∣∣∣E
(
(B An)

k
)∣∣∣ ≥ |E (B)|k α/2.

Therefore, the sequence of products B An does not converge to the uniform law. 	

Lemma 12 Suppose that B is a unitary random variable, {An} is a sequence of unitary
random variables, B is free from each of An, B is not uniform, and the sequence of
expectations E (An) does not converge to zero. Then the sequence of products B An

does not converge to the uniform law.

Proof By selecting a subsequence we can assume that |E (An)| > α > 0 for all n.
The assumption that B is not uniform means that for some k ≥ 1, E

(
Bk
) �= 0. Let k

be the smallest of such k. Consider E
(
(B An)

k):

E
(
(B An)

k
)

= [E (An)]
k E

(
Bk
)

+ · · · ,

Each of the terms in . . . includes one of E
(
Bi
)

where i < k. Therefore, all terms
in . . . are zero. Hence,

∣∣∣E
(
(B An)

k
)∣∣∣ =

∣∣∣[E (An)]
k E

(
Bk
)∣∣∣ > αk

∣∣∣E
(

Bk
)∣∣∣ .

Therefore, the sequence of products B An does not converge to the uniform law. 	
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5 Analysis

We use the following notation: ψi and Si denote ψ- and S -functions for variables Xi

(and measures µi ), and ψ(n) and S(n) denote these functions for variables �n (and
measures µ(n)).

Case I a(n) � 0.
Since E (�n) = a(n), therefore, if a(n) � 0, then E (�n) � 0. Hence, �n cannot

converge to the uniform measure on the unit circle.
Case II a(n) → 0,and there are at least two indices i and j such that ai = a j = 0.
Assume without loss of generality that j > i. Consider �n with n ≥ j and define

X =: X1, . . . , Xi and Y =: Xi+1, . . . , Xn . Then�n = XY, and E (Y ) = E (X) = 0.
Using Lemma 7, we obtain that

∣∣E [(�n)
k]∣∣ = 0 for every k > 0. Therefore, the

ψ-function of �n is zero, and �n has the uniform distribution on the unit circle.
Case III a(n) → 0, and for all i,ai > 0.

Subcase III.1 lim inf ai = 0.
In this case we can find a subsequence ani that monotonically converges to zero.
Now, consider � j , where j ∈ [

ni , ni+1) . Then we can write � j = XY, where
X = X1, . . . , Xni −1, and Y = Xni , . . . , X j . Then E X ≤ ani−1 and EY ≤ ani ≤
ani−1 .

Applying Lemma 7 we get

∣∣∣E
(
�k

j

)∣∣∣ ≤ Mkani−1 .

This implies that for a fixed k,
∣∣∣E
(
�k

j

)∣∣∣ approaches zero as j → ∞. By Lemma 8

and Proposition 9, this establishes that � j converges to the uniform law.
Case III a(n) → 0, and for all i, ai > 0

Subcase III.2 lim inf ai = a > 0.
Let us choose such an a that 0 < a < a. Starting from some j0, a j ∈ (a, 1) . Let

�̃n = X j0 , . . . , Xn+ j0−1. Then, by Lemmas 10 and 11, �̃n converges to the uniform
law if and only if �n converges to the uniform law. Hence, without loss of generality
we can restrict our attention to the case when ak ∈ (a, 1) for all k.

Lemma 13 Suppose 1 ≥ ak > 0 for all k, and let αi =: 1 − ai . Then
∏n

i=1 ai → 0
if and only if

∑n
i=1 αi → ∞.

This is a standard result. For a proof see Sect. 2.7 in [15].
Since log (1 − αi ) ≤ −αi ,we also have the following estimate, which we will find

useful later.

n∏
i=1

ai ≤ exp

(
−

n∑
i=1

αi

)
. (4)

To prove convergence to the uniform law, we have to establish that for every k > 0
the coefficient c(n)k in the Taylor expansion of function ψ(n) (z) approaches zero as
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A limit theorem for products of free unitary operators 613

n → ∞. We know from Lemma 6 that

kc(n)k = resz=0
1[

ψ−1
(n) (z)

]k
;

therefore, our main task is to estimate this residual. This is the same as estimating the
coefficient before the term zk−1 in the Taylor expansion of

f (z) =
[

z

ψ−1
(n) (z)

]k

.

We will approach this problem by using the Cauchy inequality (see Sect. 5.23 in [15]).
Applied to the coefficient before zk−1 in the Taylor expansion of f (z), this inequality
says that

∣∣∣kc(n)k

∣∣∣ ≤ M (r)

rk−1 , (5)

where r > 0 is such that f (z) is analytic inside |z| = r, and

M (r) =: max|z|=r
| f (z)| .

It is easy to check that the constant in the Taylor expansion of z/ψ−1
(n) (z) is a(n). So

M (0) = a(n), which approaches zero as n → ∞. The main question is how large we
can take r , so that M (r) remains relatively small. In other words, we want to minimize
the right-hand side of (5) by a suitable choice of r.

Proposition 14 Suppose that E Xi = ai > a for each i and that a(n) =: ∏n
i=1 ai→0.

Let αi = 1 − ai . Then for all sufficiently large n, the following inequality holds:

∣∣∣c(n)k

∣∣∣ ≤
(

C

a2

)k
[(

n∑
i=1

αi

)
exp

(
−

n∑
i=1

αi

)]k

,

where C = 217.

Proof The main tool in the proof is the following proposition:

Proposition 15 Suppose that αi =: 1 − ai < 1 − a for each i, and that z and n are
such that

|z| ≤ a2

6684
min

⎧⎨
⎩1,

(
n∑

i=1

αi

)−1
⎫⎬
⎭ .
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614 V. Kargin

Then,

∣∣∣∣∣
z

ψ−1
(n) (z)

∣∣∣∣∣
k

≤
(

2e2
)k (∏n

i=1
ai

)k
.

We will prove this proposition in the next section and assume for now that it holds.
Let n0 be so large that

∑n0
i=1 αi > 1. (We can find such n0 because by Lemma 13,∑n

i=1 αi → ∞ as n → ∞. ) In particular, this implies that
∑n

i=1 αi > 1 for every

n ≥ n0.Define rn =: a2
(∑n

i=1 αi
)−1

/6684.Then, using Proposition 15 and formulas
(5) and (4), we get

∣∣∣kc(n)k

∣∣∣ ≤
(

2e2
)k (∏n

i=1
ai

)k
(

6, 684

a2

∑n

i=1
αi

)k−1

≤
[

217

a2

(∑n

i=1
αi

)
exp

(
−
∑n

i=1
αi

)]k

,

provided that n ≥ n0. 	


Using Lemma 13, we get the following Corollary:

Corollary 16 If the assumptions of Proposition 14 hold, then for each k, the coefficient
c(n)k → 0 as n → ∞.

This Corollary shows that in Case III.2 the product �n converges to the uniform
law.

Case IV a(n) → 0, and there exists exactly one index i, such that ai = 0.
First, we want to show that without loss of generality we can assume in this case

that a1 = 0, and ak > 0 for all k > 1. Indeed, suppose ai = 0 for i > 1, and a j > 0
for j < i. Let X = X1, . . . , Xi−1 and let �̃n = Xi . . . Xi+n−1. Then E (X) �= 0, and
using Lemmas 10 and 11, we conclude that �n converges to the uniform law if and
only if �̃n converges to the uniform law.

Subcase IV.1 X1 has the uniform distribution.
In this case all moments of X1 are zero, i.e., E

(
Xk

1

) = 0 for all k > 0, and
Proposition 4 implies that all moments of �n are zero. Therefore, �n is uniform for
all n.

Subcase IV.2 X1 does not have the uniform distribution, and
∏n

k=2 an → 0 as
n → ∞.

By Case III, the product X2, . . . , Xn converges to the uniform law, and using
Lemma 10, we conclude that �n also converges to the uniform law.

Subcase IV.3 X1 does not have the uniform distribution and
∏n

k=2 an � 0 as
n → ∞.

Applying Lemma 12 to B = X1 and A = X2, . . . , Xn, we conclude that �n does
not converge to the uniform law.
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6 Proof of Proposition 15

Let

f (z) =:
(

z

ψ−1
(n) (z)

)k

.

Using Theorem 5, we can write this function as follows:

f (z) =
(

zn

(1 + z)n−1

n∏
i=1

1

ψ−1
i (z)

)k

. (6)

We want to estimate | f (z)| for all sufficiently small z.We start with some auxiliary
estimates, which will later allow us to estimate ψi (z) , and then ψ−1

i (z) for small z.

Lemma 17 Suppose µ is a probability measure on [−π, π) such that

∣∣∣∣∣∣
π∫

−π

(
eiθ − 1

)
dµ (θ)

∣∣∣∣∣∣ ≤ α. (7)

Then, (i)

π∫

−π
θ2dµ (θ) ≤ π2

2
α < 5α;

(ii)

∣∣∣∣∣∣
π∫

−π
θdµ (θ)

∣∣∣∣∣∣ ≤
(

1 + π3

12

)
α < 4α, and

(iii) if k > 2, then

π∫

−π
|θ |k dµ (θ) ≤ πk

2
α.

Proof Condition (7) implies that

π∫

−π
(1 − cos (θ)) dµ (θ) ≤ α
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616 V. Kargin

and that

∣∣∣∣∣∣
π∫

−π
sin (θ) dµ (θ)

∣∣∣∣∣∣ ≤ α.

Since 1 − cos θ ≥ (
2/π2

)
θ2, from the first of these inequalities we infer that

π∫

−π
θ2dµ (θ) ≤

(
π2/2

)
α,

which proves claim (i) of the lemma.
Next, note that |sin θ − θ | ≤ |θ |3 /6, and that

1

6

π∫

−π
|θ |3 dµ (θ) ≤ π

6

π∫

−π
θ2dµ (θ) ≤ π3

12
α.

Therefore,

∣∣∣∣∣∣
π∫

−π
θdµ (θ)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
π∫

−π
sin (θ) dµ (θ)

∣∣∣∣∣∣+
∣∣∣∣∣∣
π∫

−π
(θ − sin (θ)) dµ (θ)

∣∣∣∣∣∣
≤ α + π3

12
α.

This proves claim (ii) of the lemma.
For claim (iii), note that

π∫

−π
|θ |k dµ (θ) ≤ πk−2

π∫

−π
|θ |2 dµ (θ) ≤ πk

2
α.

	


Lemma 18 Suppose Condition (7) holds, and k is a positive integer. Then

∣∣∣∣∣∣
π∫

−π

(
eikθ − 1

)
dµ (θ)

∣∣∣∣∣∣ ≤ 7k3α.

123



A limit theorem for products of free unitary operators 617

Proof First, remark that 1 − cos (kθ) ≤ (kθ)2 /2 and therefore

∣∣∣∣∣∣
π∫

−π
(cos kθ − 1) dµ (θ)

∣∣∣∣∣∣ ≤ k2

2

π∫

−π
θ2dµ (θ)

≤ π2k2

4
α.

Next, we will use |sin (kθ)− kθ | ≤ (k |θ |)3 /6 and write

∣∣∣∣∣∣
π∫

−π
sin (kθ) dµ (θ)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
π∫

−π
kθdµ (θ)

∣∣∣∣∣∣+
∣∣∣∣∣∣
1

6

π∫

−π
(k |θ |)3 dµ (θ)

∣∣∣∣∣∣
≤ k

(
1 + π3

12

)
α + 1

6
k3π

3

2
α

≤ k3
(

1 + π3

6

)
α.

Consequently,

∣∣∣∣∣∣
π∫

−π

(
eikθ − 1

)
dµ (θ)

∣∣∣∣∣∣ ≤ α

√
π4k4

16
+ k6

(
1 + π3

6

)2

≤ 7k3α.

	


Lemma 19 Let X be unitary and E X = a > 0. If |z| ≤ 1/2 and 1 − a ≤ α, then

∣∣∣∣ψX (z)− az

1 − z

∣∣∣∣ ≤ 716α |z|2 .

Proof We can write

ψX (z)− az

1 − z
=

∞∑
k=2

(
E
(

Xk
)

− a
)

zk .
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618 V. Kargin

Therefore, using Lemma 18, we estimate

∣∣∣∣ψX (z)− az

1 − z

∣∣∣∣ ≤
∞∑

k=2

(∣∣∣E
(

Xk
)

− 1
∣∣∣+ |1 − a|

)
zk

≤ 7α |z|2
∞∑

k=0

[
(k + 2)3 + 1/7

]
|z|k

≤ 716α |z|2 .

(Note that 716 is the exact value of the sum 7
∑∞

k=0

[
(k + 2)3 + 1/7

]
2−k .) 	


To derive a similar estimate for ψ−1
X (z), we need a couple of preliminary lemmas.

Lemma 20 Suppose X is unitary and E X = a > 0. Then the function ψX (z) has
only one zero (z = 0) in the area |z| < a/3 . If |z| = a/3, then |ψX (z)| ≥ a2/6.

Proof Write the following estimate:

|ψX (z)− az| =
∣∣∣∣∣

∞∑
k=2

E
(

Xk
)

zk

∣∣∣∣∣

≤ |z|
∞∑

k=1

|z|k = |z|
1 − |z| |z| < a

2
|z| ,

if |z| < a/3.By Rouché’s theorem,ψX (z) has only one zero in |z| < a/3. The second
claim also follows immediately from this estimate. 	


Lemma 21 Suppose X is unitary and E X = a > 0. Then the function ψ−1
X (z) is

analytical for |z| < a2/6. If |z| ≤ a2/12, then

∣∣∣ψ−1
X (z)

∣∣∣ ≤ 2

a
|z| .

Proof Using Lagrange’s formula, we can write

ψ−1
X (z) = z

a
+

∞∑
k=2

ck zk,

where

ck = 1

2π i

1

k

∮

γ

du

[ψX (u)]k
.
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By the previous lemma, we can use the circle with the center at 0 and radius a/3 as γ ,
and then we can estimate ck as follows:

|ck | ≤ a/3

k
(
a2/6

)k = 2

ka

(
6

a2

)k−1

. (8)

It follows that the power series for ψ−1
X (z) converges in |z| < a2/6. If |z| < a2/12,

then we can estimate ψ−1
X (z):

∣∣∣ψ−1
X (z)

∣∣∣ ≤ |z|
a

(
1 + a

∞∑
k=2

|ck | |z|k−1

)

≤ |z|
a

(
1 +

∞∑
k=2

(
6

a2

)k−1

|z|k−1

)

≤ |z|
a

1

1 − 6
a2 |z| ≤ 2

a
|z| ,

where in the second line we used inequality (8). 	

Lemma 22 Let X be unitary and E X = a > 0. If |z| ≤ a2/12, and α ≥ 1 − a, then

∣∣∣∣∣
ψ−1

X (z)

z/ (a + z)
− 1

∣∣∣∣∣ ≤ 3, 342

a2 α |z| .

Proof First of all, by Lemma 21

∣∣∣ψ−1
X (z)

∣∣∣ ≤ 2

a
|z|

for |z| ≤ a2/12.
Now we use the functional equation for ψ−1

X (z)

ψX

(
ψ−1

X (z)
)

= z.

If |z| ≤ a2/12, then
∣∣∣ψ−1

X (z)
∣∣∣ ≤ 2 |z| /a ≤ a/6 < 1/2 and we can apply Lemma 19

to get

∣∣∣∣∣z − aψ−1
X (z)

1 − ψ−1
X (z)

∣∣∣∣∣ ≤ 716α
∣∣∣ψ−1

X (z)
∣∣∣2

≤ 716α
4

a2
|z|2 = 2, 864α

a2
|z|2 .

123



620 V. Kargin

Next, we write this as

∣∣∣z − (a + z) ψ−1
X (z)

∣∣∣ ≤
∣∣∣1 − ψ−1

X (z)
∣∣∣ 2, 864α

a2
|z|2

≤ 7

6

2, 864α

a2
|z|2 < 3, 342α

a2
|z|2 .

(In the second inequality we used the fact that
∣∣∣ψ−1

X (z)
∣∣∣ ≤ 1/6 if |z| ≤ a2/12.) It

follows that

∣∣∣∣∣
ψ−1

X (z)

z/ (a + z)
− 1

∣∣∣∣∣ ≤ 3, 342

a2 α |z| .

	

Lemma 23 Let E Xi = ai and assume that for each i, it is true that ai ≥ a. Assume
also that |z| ≤ a2/3, 342 and let αi =: 1 − ai . Then

∣∣∣∣∣
n∏

i=1

1

ψ−1
i (z)

∣∣∣∣∣ ≤
∏n

i=1 ai

|z|n
n∏

i=1

1

1 − ci |z|

∣∣∣∣∣
n∏

i=1

(
1 + z

ai

)∣∣∣∣∣ ,

where ci = 3, 342αi/a2
i .

Proof From Lemma 22 we infer that

∣∣∣ψ−1
i (z)

∣∣∣ ≥
∣∣∣∣ z

ai

1

1 + z/ai

∣∣∣∣
(

1 − 3, 342αi

a2
i

|z|
)
.

Multiplying these inequalities together and inverting both sides, we get the desired
result. 	

Lemma 24 Under the assumptions of the previous lemma, the following inequality
holds:

| f (z)| ≤
(

|1 + z|
∏n

i=1
ai

n∏
i=1

1

1 − ci |z|

∣∣∣∣∣
n∏

i=1

1 + z/ai

1 + z

∣∣∣∣∣
)k

, (9)

where ci = 3, 342αi/a2
i .

Proof The claim of this lemma is a direct consequence of Lemma 23 and equality
(6). 	


We will estimate terms in the product on the right-hand side of (9) one by one.
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Lemma 25 Suppose that αi =: 1 − ai < 1 − a for each i, and that

|z| ≤ a2

6, 684
min

⎧⎨
⎩1,

(
n∑

i=1

αi

)−1
⎫⎬
⎭ .

Then
∣∣∣∣∣

n∏
i=1

1 + z/ai

1 + z

∣∣∣∣∣ ≤ e.

Proof We write

∣∣∣∣∣
n∏

i=1

1 + z/ai

1 + z

∣∣∣∣∣ = exp

(
Re

n∑
i=1

log

(
1 + αi

ai

z

1 + z

))
.

Recall that Re log (1 + u) ≤ |u| if |u| < 1. Under our assumption about |z| , it is true
that

∣∣∣∣αi

ai

z

1 + z

∣∣∣∣ < 1.

Therefore, we can write

∣∣∣∣∣
n∏

i=1

1 + z/ai

1 + z

∣∣∣∣∣ ≤ exp

(∣∣∣∣ z

1 + z

∣∣∣∣
n∑

i=1

αi

ai

)

≤ exp

(
2

a
|z|
∑

αi

)

≤ e.

	

Lemma 26 Suppose that αi =: 1 − ai < 1 − a for each i, and that

|z| ≤ a2

6, 684
min

⎧⎨
⎩1,

(
n∑

i=1

αi

)−1
⎫⎬
⎭ .

Then,

n∏
i=1

1

1 − ci |z| ≤ e,

where ci = 3, 342αi/a2
i .
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Proof We use the inequality log (1 − u) ≥ −2u,which is valid for u ∈ (0, 1/2) , and
write

n∏
i=1

1

1 − ci |z| = exp

(
−

n∑
i=1

log (1 − ci |z|)
)

≤ exp

(
2 |z|

n∑
i=1

ci

)

≤ exp

[
6, 684

a2

(
n∑

i=1

αi

)
|z|
]

≤ e.

	

Finally, note that if |z| ≤ a2/6, 684, then |1 + z| ≤ 2. Collecting all the pieces, we

obtain that if

|z| ≤ a2

6, 684
min

⎧⎨
⎩1,

(
n∑

i=1

αi

)−1
⎫⎬
⎭

then

| f (z)| ≤
(

2e2
)k (∏n

i=1
ai

)k
.

This completes the proof of Proposition 15.

7 Conclusion

We have derived sufficient and necessary conditions for the sequence of products
of free unitary operators to converge in distribution to the uniform law. If essential
convergence denotes the situation when the partial products continue to converge even
after an arbitrary finite number of terms Xi are removed, then the necessary and suffi-
cient condition for essential convergence is that the products

∏n
i=k0

E Xi converges to
zero for all k0, that is, that the products of expectations essentially converge to zero.
Essential convergence implies convergence. In addition, non-essential convergence
can occur when there is either a term that has the uniform distribution, or there are
two terms that have zero expectation. In the latter case convergence occurs because
the product of these two terms has the uniform distribution.
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