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On the joint distribution of the area and the
number of peaks for Bernoulli excursions
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Let Pn be a random Bernoulli excursion of length 2n. We show that the area under Pn and the number of peaks of
Pn are asymptotically independent. We also show that these statistics have the correlation coefficient asymptotic
to c/

√
n for large n, where c < 0, and explicitly compute the coefficient c.
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1. Introduction

A Bernoulli walk of length 2n is a sequence of integers ηi , i = 0, . . . ,2n, such that η0 = 0 and ηi −ηi−1 ∈
{−1,1} for i ≥ 1. A Bernoulli excursion has an additional requirement that ηi ≥ 0 for all i and η2n = 0.
A random Bernoulli excursion is chosen uniformly at random from the set of all Bernoulli excursions.

It will be convenient for us to use the alternative language of Dyck lattice paths, which correspond
bijectively to Bernoulli excursions. Recall that a Dyck path of half-length n is a lattice path from (0,0)
to (n,n) consisting of n horizontal steps “East” from (i, j) to (i + 1, j) and n vertical steps “North” from
(i, j) to (i, j + 1), such that all points on the path satisfy i ≤ j, that is, the path lies on or above the
line y = x. See an example in Figure 1. The bijection with Bernoulli excursions is given by the map:
“North” and “East” at step i correspond to ηi − ηi−1 = +1,−1, respectively.

We will denote the set of all Dyck paths of half-length n by Dn. The size of this set is given by the
Catalan number

Cn =
1

n + 1

(
2n
n

)
.

A peak in a Dyck path P corresponds to a subsequence NE . The roughness of path P is defined as
the number of peaks of P, which we denote pk(P). Another quantity of interest is the area of a Dyck
path P, a(P), which we define as the number of whole unit squares below the path P and above the line
y = x. For the path in Figure 1, pk(P) = 2 and a(P) = 4.

Now suppose that the Dyck paths are sampled uniformly at random from Dn and define Xn and Yn
as the area and the number of peaks for a random Dyck path, respectively.

An explicit formula for the distribution of Yn was found by Narayana (1959) and the asymptotic
normality of Yn follows from the results of Kolchin (1986) (Theorem 2.3.1) for random graphs; the
asymptotic normality and convergence of all moments was proven by a different method in Janson
(2001) (Example 3.4). Yet another method of proof can be found in Drmota (2009) (Theorem 3.13). Our
Proposition 5 gives another proof of this convergence by an explicit calculation of the moment limits.
So, for large n, the distribution of Yn is approximately normal with expectation ∼ n/2 and variance
∼ n/8.
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Figure 1. A Dyck path NNNEEENNEE of half-length n = 5 with two peaks and area 4.

For the random area Xn, Theorem 5 in Takács (1992) implies that Xn/n3/2 has a limiting distribution
equal to the distribution of

√
2Bex , where

Bex =

∫ 1

0
Bex(t) dt,

and Bex(t) is a normalized Brownian excursion. The distribution of Bex was studied in Louchard
(1984a) and Louchard (1984b), where it was described in terms of the Airy function. This distribution
is often called the Airy distribution or the Airy distribution of the area type (see, for example, Section 2
in Janson (2007) and Proposition VII.15 on p. 534 in Flajolet and Sedgewick (2009)). See also Takács
(1991), Flajolet and Louchard (2001) for further analytical properties of the Airy distribution and a
survey paper of Janson (2007) for additional details about results in this area of research.

Recently, there has been a growing interest in the joint distribution of random statistics of combi-
natorial structures. For example, Nguyen The (2004) investigated the joint distribution of the area and
the inertial moment for Bernoulli bridges and excursions, with the inertial moment defined as

∑n
i=0 x2

i .
Richard (2009) generalized Nguyen The’s results to the case of M + 1 ≥ 2 moments uk =

∑n
i=0 xki for

k = 0, . . . ,M . Blanco and Petersen (2014) studied the joint distribution of the area under a random Dyck
path and the rank of the corresponding partition in the lattice of non-crossing partitions. Chassaing,
Marckert and Yor (2000) and Janson (2008) studied the joint distribution of the height and width of a
random planar tree.

We focus on the joint distribution of the random variables Xn and Yn, when n is large. As our
first result, we find that Xn and Yn are asymptotically uncorrelated. More precisely, their correlation
coefficient is −cn−1/2 +O(n−1), where

c =
( 20

3π
− 2

) −1/2
≈ 2.8622 . . . .

If the rescaled limit of Xn and Yn were a joint Gaussian distribution, then the asymptotically vanish-
ing correlation coefficient between Xn and Yn would imply the asymptotic independence, that is, the
rescaled limit would be a product of marginal Gaussian distributions. In our case, however, the rescaled
limit of Xn is the Airy distribution, so in order to investigate the rescaled limit of the joint distribution
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of Xn and Yn, we check the behavior of correlations between (Xn)k and (Yn)l , for all k, l ≥ 1. We prove
that these correlations are indeed asymptotically vanishing for all k, l ≥ 1 and in this way we establish
the asymptotic independence of Xn and Yn.

These results can be compared with findings of Labarbe and Marckert (2007), who considered a
random Bernoulli excursion of length 2n conditioned to have a specific fraction of peaks. They assume
that Yn/n → α ∈ (0,1) as n →∞. Then, it can be inferred from their results that the excursions with
larger α have smaller area.

In other words, the results of Labarbe and Marckert imply that E(n− 3
2 Xn |Yn = 
αn�) is decreasing in

α for large n, while we find that Xn and Yn are asymptotically independent after rescaling.
We can suggest the following intuitive explanation for this difference in results. The theorems of

Labarbe and Marckert (2007) imply that a change in Yn on the scale of n is associated to a change in Xn

on the scale of n3/2, which is the natural order of fluctuations for Xn. However, since Yn is concentrated,
its natural order of fluctuations is n1/2. If we assume that the dependence between Xn and Yn found in
Labarbe and Marckert (2007) operates also on smaller scales, then the fluctuations in Yn on the order
of n1/2 are likely to be associated with changes in Xn on order of n in the conditional expectation, and
this is smaller than n3/2, the natural order of fluctuations in Xn. Thus, these fluctuations will not be
strong enough to prevent the asymptotic independence after rescaling.

For the proof of our results, we use the method of generating function similar to the method em-
ployed by Nguyen The (2004). However, in our case, the sub-leading terms of the asymptotic expansion
of E(Xk

nY l
n) are also needed due to the fact that random variables Xn and Yn are of different type: while

Yn concentrates with the growth in n, Xn does not. In order to overcome this difficulty, we will use
the “dominant balance” method for q-functional equations, which was developed by Richard and col-
laborators in a series of papers: Richard and Guttmann (2001), Richard, Guttmann and Jensen (2001),
Richard (2002), Richard, Jensen and Guttmann (2008), Schwerdtfeger, Richard and Thatte (2010). The
original goal of these papers was to study the lattice polygon models and to find an approach to the
enumeration problem for closed self-avoiding walks; however, this method is quite useful in other
combinatorial problems, and we employ it to prove the asymptotic independence of Xn and Yn.

Finally, we would like to mention that the random variables Xn and Yn appear also in other combi-
natorial problems. Indeed, Bernoulli excursions and Dyck paths are examples of Catalan structures,
– the families of combinatorial objects which are enumerated by Catalan numbers. These structures
are inter-connected by numerous bijections. A list of these structures is given in Volume 2 of Stanley
(1999). See also Stanley (2015) and the “Catalan Addendum” on Stanley’s webpage https://math.mit.
edu/~rstan/ec/ for a larger list containing 207 Catalan structures.

For example, one of the bijections between Catalan structures relates Dyck lattice paths of half-length
n and planar rooted trees on n + 1 vertices. This bijection is given by the depth-first search (“DFS”)
walk on the tree. Under this bijection, Xn = “total path length of the tree – n”, and Yn corresponds to
the number of leaves in the tree. By using this bijection, Takács gave the formula for the distribution of
the total path length for a random tree (see Takács (1994)). Our results can be similarly reformulated as
results about the joint distribution of the number of leaves and the total path length of a random planar
tree.

In the rest of the paper, we give precise statements of our results in Section 2.1 and describe the
general outline of proofs in Section 2.2. The proofs of theorems will be presented in the following
order. First, we prove Theorem 1 in Section 3.1. Then we prove some additional results necessary for
the proof of Theorem 2 in Section 3.2 and prove a particular case of Theorem 2 in Section 3.3. Finally,
we prove Theorem 2 in full generality in Section 3.4.

https://math.mit.edu/~rstan/ec/
https://math.mit.edu/~rstan/ec/
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2. Results

2.1. Statements

Let Corr(ξ,η) denote the correlation coefficient between random variables ξ and η,

Corr(ξ,η) :=
Cov(ξ,η)√
Var(ξ)Var(η)

.

Theorem 1. Let Xn and Yn be the area and the roughness of a uniformly random Dyck path P ∈ Dn.
Then, as n →∞,

Corr(Xn,Yn) = −
1

√
2
√

10
3π − 1

n−1/2 +O
(
n−1) .

Numerically, the coefficient is −2.8622. As an immediate consequence, we find that Xn and Yn are
asymptotically uncorrelated for large n. We will prove this theorem in Section 3.1.

Theorem 1 suggests that Xn and Yn might be asymptotically independent, that is, that the joint dis-
tribution of appropriately scaled Xn and Yn converges to the product of the Gaussian and Airy distribu-
tions.

To investigate this possibility, we note that in order to show the asymptotic independence, it is enough
to show that as n →∞,

E

[
g
( Xn − EXn

n3/2

)
h
(Yn − EYn

n1/2

) ]
− Eg

( Xn − EXn

n3/2

)
Eh

(Yn − EYn
n1/2

)
→ 0, (1)

for all bounded continuous functions g and h. It is known that the scaling limit distributions for Xn and
Yn have exponentially-declining tails. (For Yn, this is the Gaussian distribution, and for Xn, the scaling
limit is the Airy distribution, which also has thin tails – see the proof of Theorem 3.1. in Csörgő, Shi
and Yor (1999) and Example 4.2 in Fill and Janson (2009).) Since the polynomial functions are dense
among the continuous functions on compact supports, we can use truncation to show that it is enough
to check (1) for polynomial g and h.

In particular, the asymptotic independence will follow, if we show that the correlations between
(Xn)k and (Yn)l converge to zero for all k, l ≥ 1, as n →∞. Let

Corr(Xk
n ,Y

l
n) =

E(Xk
nY l

n) − E(Xk
n )E(Y l

n)
Var(Xk

n )1/2Var(Y l
n)1/2

(2)

and

X̂n =
Xn√
2n3/2

and Ŷn =
Yn − EYn√
Var(Yn)

. (3)

Theorem 2. For all integer k, l ≥ 1, as n →∞,

Corr(Xk
n ,Y

l
n) =O

(
n−1/2) ,

and (X̂n,Ŷn) converges in distribution to the product of the Airy distribution (i.e., the distribution of
Bex) and the standard normal distribution.

Remark 3. While the normalization of Yn by EYn in (3) is essential, the normalization of Xn by EXn

can be omitted since EXn and
√
Var(Xn) have the same order n3/2 as n →∞.
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2.2. Strategy of the proof

The statistics Xn and Yn are in a certain sense very different from each other. Namely, as n grows, Yn (the
roughness of the path) concentrates around its mean, that is, its standard deviation becomes negligible
relative to its mean: E(Yn) � n (that is, E(Yn) ∼ cn for a positive constant c), and

√
Var(Yn) � n1/2. In

contrast, Xn does not concentrate: E(Xn) � n3/2 and
√
Var(Xn) � n3/2 as well.

This observation can be extended to higher moments: E(Y l
n) � nl , and

√
Var(Y l

n) � nl−1/2, while

E(Xk
n ) �

√
Var(Xk

n ) � n3k/2.

This implies that the denominator in (2) is ns where s = 3
2 k + l − 1

2 , and we aim to show that the the

numerator is O
(
ns−

1
2
)
.

Our approach to this problem will be to write the expansions:

E(Xk
n ) ∼ a(0)

k
n3k/2 + a(1)

k
n(3k−1)/2 + . . . ,

E(Y l
n) ∼ b(0)

l
nl + b(1)

l
nl−1/2 + . . . ,

E(Xk
nY l

n) ∼ c(0)
k ,l

n3k/2+l + c(1)
k ,l

n(3k−1)/2+l + . . . . (4)

(Superscript (0) is for the leading order and (1) is for the first subleading order.) Then, we have

E(Xk
nY l

n) − E(Xk
n )E(Y l

n) ∼ [c(0)
k ,l

− a(0)
k

b(0)
l
]n3k/2+l

+ [c(1)
k ,l

− a(0)
k

b(1)
l

− a(1)
k

b(0)
l
]n(3k−1)/2+l + . . . .

From this asymptotic expansion, we can conclude that it must be that c(0)
k ,l

− a(0)
k

b(0)
l
= 0. (Otherwise

the absolute value of the correlation |Corr(Xk
n ,Y

l
n)| would exceed 1 for sufficiently large n.) Hence, we

only need to show that c(1)
k ,l

− a(0)
k

b(1)
l

− a(1)
k

b(0)
l
= 0.

One step in the proof is to show that b(1)
l
= 0 for all l ≥ 1. (See Remark 6 after Proposition 5 for

the justification of this identity.) After this identity is proved, in order to show that Corr(Xk
n ,Y

l
n) =

O(n−1/2), we need to show that

c(1)
k ,l
= a(1)

k
b(0)
l
. (5)

The coefficients in expansions (4) can be obtained by relating these coefficients (“moments”) to the
asymptotic expansion of the moment generating function in a neighborhood of the smallest singularity.
This step is followed by the method of dominant balance, which is a powerful technique to perform
“moment pumping” systematically and calculate the coefficients in the asymptotic expansion of the
moment generating function (“mgf”). This is achieved by an appropriate rescaling of the mgf variables,
so that the functional equation satisfied by the mgf is converted into differential equations for the
generating functions of the leading and sub-leading singular parts of the mgf.

In more detail, we define

D(q,u, z) =
∑
P∈D

qa(P)(1 + u)pk(P)z |P |, (6)

where the sum is over all Dyck paths, |P | is the half-length of path P, and where by convention we set
D(q,u,0) = 1.



Joint distribution of the area and the number of peaks 2705

The joint factorial moments of Xn and Yn can be obtained from the partial derivatives of D(q,u, z)
with respect to q and u, evaluated at the point (q,u) = (1,0),

E

[
Xn(Xn − 1) . . . (Xn − k + 1)Yn(Yn − 1) . . . (Yn − l + 1)

]

=
1

Cn

{
[zn] ∂

k

∂qk
∂l

∂ul
D(q,u, z)

���
q=1,u=0

}
, (7)

where we use notation [zn] f (z) for the coefficient of the n-th power of z in the series for f (z), and
where Cn is the Catalan number (i.e., the total number of Dyck paths on 2n steps).

It is possible to show by induction that the first two highest terms in the asymptotic expansion
of E(Xk

nY l
n) coincide with the corresponding terms in the expansion of the factorial moment, so we

concentrate on evaluation of [zn] ∂k

∂qk
∂l

∂ul D(q,u, z)
���
q=1,u=0

. In order to get coefficients in (4), we need

the asymptotics of these expressions for large n.
The transfer method is a way to get the asymptotics of [zn] f (z) for a given f (z). The first step of this

method asks for an asymptotic expansion of f (z) in powers of (1− z/z0), where z0 is the singularity of
f (z) with the smallest absolute value. (In our case, z0 = 1/4.) Then, one can translate the coefficients
in this asymptotic expansion to asymptotics of [zn] f (z) by using a set of specific transfer formulas. See
Section VI in Flajolet and Sedgewick (2009) for a detailed description of this method.

In particular, near z = 1
4 , we have the asymptotic expansion

∂k

∂qk
∂l

∂ul
D(q,u, z)

���
q=1,u=0

=
αk ,l

(1 − 4z)3k/2+l−1/2
−

βk ,l

(1 − 4z)3k/2+l−1
(8)

+O
(
(1 − 4z)−(3k/2+l−3/2)) ,

for k, l ≥ 0. This expansion can be derived by using induction. The induction starts with the cases
(k, l) ∈ {(0,0),(1,0),(0,1)}, which we consider in Section 3.1, and then proceeds by the route taken in
the proof of expansion in Lemma 3.5 in Schwerdtfeger, Richard and Thatte (2010) by differentiating
the functional equation for D(q,u, z). In particular, the induction shows that the order of the singularity
of the function ∂k

∂qk
∂l

∂ul D(q,u, z)
���
q=1,u=0

at z = 1
4 is 3

2 k + l − 1
2 . This could be also guessed from the

known results on the asymptotics of moments of random variables Xn and Yn for large n.
Then, by Theorems VI.1 and VI.4 in Flajolet and Sedgewick (2009), if either k > 0 or l > 1, we have

[zn] ∂
k

∂qk
∂l

∂ul
D(q,u, z)

���
q=1,u=0

∼ 4n
[
αk ,l

n3k/2+l−3/2

Γ(3k/2 + l − 1/2) + βk ,l
n3k/2+l−2

Γ(3k/2 + l − 1) (9)

+O(n3k/2+l−5/2)
]
.

(The case k = 0 and l = 1 is special, since in this case 3k/2 + l − 1 = 0 and the second term in the
expansion (8) is not singular. In this case, the second term in the expansion (9) should be replaced by
zero.) According to Figure VI.3 in Flajolet and Sedgewick (2009),

Cn ∼
4n

√
πn3

(
1 − 9

8
n−1 +O(n−2)

)
,

and we get from (4), (7) and (9) that

c(1)
k ,l
=

√
πβk ,l

Γ(3k/2 + l − 1) , a(1)
k
=

√
πβk ,0

Γ(3k/2 − 1) , b(0)
l
=

√
πα0,l

Γ(l − 1/2) .
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Hence, in order to prove (5), we need to obtain the relation

βk ,l =

√
πΓ(3k/2 + l − 1)

Γ(3k/2 − 1)Γ(l − 1/2) βk ,0α0,l . (10)

In Proposition 5 below we show that for every l ≥ 1,

α0,l =
Γ(l − 1/2)

2l
√
π
, (11)

so (10) reduces to

βk ,l =
Γ(3k/2 + l − 1)
2lΓ(3k/2 − 1)

βk ,0 ≡
(3k/2 − 1)l

2l
βk ,0, (12)

where (x)l is the Pochhammer symbol, (x)l := x(x + 1) . . . (x + l − 1).
This is where the method of dominant balance contributes. The method of dominant balance is

a powerful technique to perform “moment pumping” systematically, also for sub-leading corrections
to the asymptotic behavior. This is achieved by an appropriate rescaling of the generating function
variables in the neighborhood of singularity. This turns the given functional equation into a sequence
of differential equations. For example, we write F̂(s,ε) = D(q,u, z)|u=0 where 1 − q = ε3, 1 − 4z = sε2.
(This choice for the change of variables is suggested by the asymptotic behavior of the moments of
random variables Xn and Yn.) Then, the dominant balance method suggests to search the solution of
the functional equation on D(q,u, z) in the form

F̂(s,ε) = 2 + F0(s)ε + F1(s)ε2 + . . . , (13)

where Fi(s) are Laurent series in powers of s1/2. (This specific form is suggested by the solution of the
functional equation when q = 1 and u = 0, see Eqn. (25) below.) More precisely,

F0(s) =
∞∑
k=0

f (0)
k

s3k/2−1/2
and F1(s) =

∞∑
k=0

f (1)
k

s3k/2−1
, (14)

and these expansions are closely related to the asymptotic expansion (8). In particular, we will show
that

(−1)k k! f (0)
k
= αk ,0 and (−1)k k! f (1)

k
= −βk ,0.

The expansions (13) and (14) are formal power series, and they are especially suitable for solving the
functional equation on D(q,u, z). In particular, (14) are generating series for coefficients αk ,0 and βk ,0.
We follow Schwerdtfeger, Richard and Thatte (2010) here.

By using the expansion (13) and the functional equation for D(q,u, z), we can obtain the differential
equations for functions F0(s), F1(s), . . . . For example, we have

F ′
0(s) = 2s − 1

2

(
F0(s)

) 2
.

This equation implies a recursion on coefficients f (0)
k

which can be used to derive the Takácz recursion
for the main asymptotic term of the area distribution moments.

Our application of the method of dominant balance follows these main ideas, however, it is more
involved. In order to illustrate the main ideas of the method, we first prove Theorem 2 for the special
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case k ≥ 1 and l = 1 in Section 3.3. This involves differential equations for F0(s) and F1(s) and differ-
ential equations for G0(s) and G1(s), which are Laurent series in the dominant balance approximation
for Ĝ(s,ε) = ∂uD(q,u, z)|u=0 − 1. From these differential equations we will find that G0(s) = − 1

2 F ′
0(s)

and G1(s) = 1
2 − 1

2 F ′
1(s) and show in (60) that this implies that

βk ,1 =
3k − 2

4
βk ,0, (15)

which is (12) for l = 1.
In Section 3.4, we consider general k and l. Here we use a somewhat more general change of coordi-

nates, 1 − q = ε3, 1 − 4z = sε2, u = tε2 and define F̂(s, t,ε) = D(q,u, z) − u. We look for approximation
of F̂(s, t,ε) in the form

F̂(s, t,ε) = 2 + (2s − t/2)ε2 + ε
(
F0(s, t) + F1(s, t)ε + F2(s, t)ε2 + . . .

)
.

Together with the functional equation on D(q,u, z), this gives some partial differential equations on
F0(s, t), F1(s, t), . . . , which we can use to derive relations between coefficients in the Laurent expan-
sions of functions F0(s, t)|t=0 and F1(s, t)|t=0. Eventually, this allows us to prove the identity (12) and
completes the proof of Theorem 2.

3. Proofs
The basis for our calculations is Theorem 6.14 in Petersen (2015), which implies the following formula:

D(q,u, z) = u +
1

1 − zu −
z

1 − qzu −
qz

1 − q2zu −
q2z

. . .

. (16)

(The formula is slightly adjusted since we use peaks of Dyck paths and Petersen uses valleys in the
definition of the generating function.)

In fact, it will be more convenient to work with a slightly different function

F(q,u, z) := D(q,u, z) − u. (17)

For F(q,u, z), equation (16) means that we have the following functional equation:

F(q,u, z) = 1
1 − zu − zF(q,u,qz) . (18)

By differentiating, we can also obtain functional equations for derivatives, for example:

Fu(q,u, z) = z(
1−zu−zF(q,u,qz)

) 2

(
1 + Fu(q,u,qz)

)
= z[F(q,u, z)]2

(
1 + Fu(q,u,qz)

)
. (19)

Remark 4. The function F(q,0, z) is the generalized Rogers-Ramanujan function (with the reversed
sign for the argument z). The standard (and famous) Rogers-Ramanujan function is F(q,0,−1). See
Berndt and Yee (2003) for additional information.
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3.1. Proof of Theorem 1

In addition to formula (19), we can derive formulas for other derivatives of F(q,u, z). For con-
ciseness, we suppress the first two arguments of F(q,u, z) in the following formulas. For example,
F(z) := F(q,u, z) and F(qz) := F(q,u,qz). We have

Fq(z) = zF2(z)
(
Fq(qz) + zFz(qz)

)
, (20)

Fqq(z) = 2zF(z)Fq(z)
(
Fq(qz) + zFz(qz)

)
(21)

+ zF2(z)
(
Fqq(qz) + 2zFqz(qz) + z2Fzz(qz)

)
,

Fqu(z) = 2zF(z)Fu(z)
(
Fq(qz) + zFz(qz)

)
(22)

+ zF2(z)
(
Fqu(qz) + zFzu(qz)

)
,

Fuu(z) = 2zF(z)Fu(z)
(
1 + Fu(qz)

)
+ zF2(z)Fuu(qz). (23)

Now let us introduce another piece of notation. For any function f (q,u, z), we will write:

◦
f (z) := f (q,u, z)

���
q=1,u=0

. (24)

Our generating functions f (q,u, z) have a singularity at (q,u, z) = (1,0,1/4) and we will expand
◦
f (z) in

power series of (z − 1/4).
By using functional equation (18), we get

◦
F(z) = 1 −

√
1 − 4z

2z
= 2

(
1 − (1 − 4z)1/2 + (1 − 4z) − (1 − 4z)3/2 + . . .

)
, (25)

and we can calculate
◦
Fz(z),

◦
Fzz(z), . . . by differentiation. We can also recursively calculate the deriva-

tives of F(q,u, z) with respect to q and u, evaluated at q = 1 and u = 0, by using the equations from the

system above. For example, for
◦
Fq(z), equation (20) implies that

◦
Fq(z) = z

◦
F(z)2

( ◦
Fq(z) + z

◦
Fz(z)

)
, (26)

which can be solved as

◦
Fq(z) =

1 − 2z −
√

1 − 4z

(1 − 4z)(1 +
√

1 − 4z)
(27)

=
1
2
(1 − 4z)−1 − 3

2
(1 − 4z)−1/2 + 2 − 2(1 − 4z)1/2 +O

(
(1 − 4z)

)
. (28)

The transfer theorem VI.4 from Flajolet and Sedgewick (2009) allows us to get the asymptotic expan-

sion for the coefficient before zn in the expansion of
◦
Fq(z) in powers of z:

[zn]
◦
Fq(z) = 4n

[ 1
2
− 3

2
1

√
πn1/2

+
( 3

16
+ 1

) 1
√
πn3/2

+O
(
n−5/2) ] . (29)
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In addition, by using Table VI.3 in Flajolet and Sedgewick (2009), we write the asymptotic expansion
for the Catalan numbers as

Cn =
4n

√
πn3

[
1 − 9

8
n−1 +

145
128

n−2 − 1155
1024

n−3 + +O
(
n−4) ] . (30)

This leads to the expansion for the expected value of Xn:

EXn =
[zn]

◦
Fq(z)
Cn

=

√
π

2
n3/2 − 3

2
n +

9
√
π

16
n1/2 − 1

2
+O(n−1/2). (31)

In a similar fashion, we can calculate the expansion of
◦
Fqq(z):

◦
Fqq(z) =

5
8
(1 − 4z)−5/2 − 3

2
(1 − 4z)−2 +

3
4
(1 − 4z)−3/2 +O

(
(1 − 4z)−1) , (32)

which implies that the second fractional moment of Xn is

E
[
Xn(Xn − 1)] =

[zn]
◦
Fqq(z)
Cn

=
5
6

n3 − 3
√
π

2
n5/2 + 4n2 +O

(
n3/2),

and since the variance Var(Xn) = E
[
Xn(Xn − 1)] + EXn −

(
EXn

) 2, we can calculate that

Var(Xn) =
( 5

6
− π

4

)
n3 −

( 7
4
− 9π

16

)
n2 +O

(
n). (33)

(The expansions (31) and (33) are related to formulas in Section 4 of Takács (1992). In particular,
Theorem 4 in Takács (1992) gives the main asymptotic term for the moments of a random variable ωn
closely related to our Xn.)

For the moments of the random variable Yn and the cross-moments, we need partial derivatives of

D(q,u, z) with respect to u; so we note that equation (17) implies that
◦
Du(z) =

◦
Fu(z) + 1,

◦
Duu(z) =

◦
Fuu(z), and

◦
Dqu(z) =

◦
Fqu(z).

From equations (19), (22), and (23), we obtain

◦
Fu(z) =

1
2
(1 − 4z)−1/2 − 1

2
, (34)

◦
Fqu(z) =

1
4
(1 − 4z)−2 − 3

8
(1 − 4z)−3/2 − 1

8
(1 − 4z)−1 +O

(
(1 − 4z)−1/2) , (35)

◦
Fuu(z) =

1
8
(1 − 4z)−3/2 − 1

4
(1 − 4z)−1/2 +

1
8
(1 − 4z)1/2 +O

(
(1 − 4z)

)
. (36)

This leads to the following results:

EYn =
[zn]

◦
Du(z)
Cn

=
1
2
(n + 1) +O

(
n−2), (37)

Var(Yn) =
n
8
+

1
16
+O

(
n−1), (38)
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E(XnYn) =
√
π

4
n5/2 − 3

4
n2 − 13

√
π

32
n3/2 − 3

4
n +O

(
n1/2) . (39)

Then, using (31),

Cov(Xn,Yn) = E(XnYn) − E(Xn)E(Yn) = −
√
π

8
n3/2 +

1
4

n +O
(
n1/2)

and

Corr(Xn,Yn) =
Cov(Xn,Yn)√
Var(Xn)Var(Yn)

= − 1
√

2
√

10
3π − 1

n−1/2 +O(n−1).

This completes the proof of Theorem 1.

3.2. A preliminary result for the proof of Theorem 2

Let F(u, z) := F(q,u, z)
��
q=1.

Proposition 5. For r ≥ 2, we have that

1
r!
∂r

∂ur
F(q,u, z)

��
q=1,u=0 =

1
r!
∂r

∂ur
F(u, z)

��
u=0 =

zrPr−2(z)
(1 − 4z)r− 1

2

, (40)

where Pn(z) is a polynomial given by formula

Pn(z) = F2 1

( 1 − n
2
,−n

2
,2,4z

)
, (41)

and F2 1(a,b,c, z) is the Gauss hypergeometric function. Moreover, for r ≥ 1, we have the following
asymptotic expansion around z = 1/4:

∂r

∂ur
F(q,u, z)

��
q=1,u=0 =

α0,r

(1 − 4z)(2r−1)/2
−

β0,r

(1 − 4z)r−1 +O
(
(1 − 4z)−

2r−3
2

)
, (42)

where α0,1 =
1
2 , β0,1 =

1
2 , and for r ≥ 2, we have

α0,r =
Γ
(
r − 1

2
)

2r
√
π
=
(2r − 3)!!

22r−1 , β0,r = 0.

Remark 6. Since b(1)
l

in (4) are proportional to β0,l for l ≥ 2, one implication of Proposition 5 is that

b(1)
l
= 0 for l ≥ 2. One can also check that b(1)1 = 0 (see equation (37)). This justifies the claim that we

made in Section 2.2.

Remark 7. Since (i) α0,r and β0,r determine the asymptotic behavior of the moments E(Yr
n ), and

(ii) we can identify α0,r as the moments of a normal distribution, Proposition 5 provides us with an
alternative proof for the rescaled convergence of Yn to the standard normal distribution.
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Proof of Proposition 5. Note that since we do not differentiate over q, we can set q = 1 immediately.
From (18),

F(u, z) = 1 − uz −
√
(1 − uz)2 − 4z
2z

. (43)

(The case with the positive sign before the square root is ruled out because the definition of D(q,u, z)
in (6) implies that limz→0 F(0, z) = 1.) In order to prove (40), write

Fuu(u, z) =
2z2(

(1 − uz)2 − 4z
) 3/2

=
2z2(

(1 − t)2 − 4z
) 3/2
,

where we changed variables, t = uz. By repeatedly using the identity

∂ f (t, z)
∂u

=
∂ f (t, z)
∂t

∂t
∂u
+
∂ f (t, z)
∂z

∂z
∂u
= z
∂ f (t, z)
∂t

,

we can reformulate (40) as the statement about partial derivatives of F with respect to the new variable
t. Then, (40) can be seen as a claim about the Taylor expansion of F in powers of t and it is equivalent
to the claim that

2z2(
(1 − t)2 − 4z

) 3/2
= z2

∞∑
r=2

Pr−2(z)r(r − 1)
(1 − 4z)r−1/2

tr−2 = z2
∞∑
n=0

Pn(z)(n + 2)(n + 1)
(1 − 4z)n+3/2

tn, (44)

where Pn(z) as defined in (41). In order to derive this formula, we recall that

1
(1 − 2xs + s2)α

=

∞∑
n=0

C(α)
n (x)sn,

where Cn(α)(x) are the Gegenbauer polynomials (see Stein and Weiss (1971), Section IV.2). Then we
use x = (1 − 4z)−1/2 and s = t(1 − 4z)−1/2, so that

1 − 2xs + s2 =
(1 − t)2 − 4z

1 − 4z
,

and write

(
(1 − t)2 − 4z

) −3/2
=

∞∑
n=0

C(3/2)
n

( 1
√

1 − 4z

) tn

(1 − 4z)n/2+3/2
.

Then, we use the fact that

C(3/2)
n

( 1
√

1 − 4z

)
=

2n

(1 − 4z)n/2

(3/2)n
n!

F2 1

(
− n/2,(1 − n)/2,−1/2 − n,1 − 4z

)
,

where (3/2)n = Γ( 3
2 + n)/Γ( 3

2 ) is the Pochhammer symbol for 3/2 (see formula 15.9.3 of the Digital
Library of Mathematical Functions (https://dlmf.nist.gov/15.9). It follows that

Fuu(t, z) = 2z2
∞∑
n=0

2n(3/2)n
n!

F2 1

(
− n/2,(1 − n)/2,−1/2 − n,1 − 4z

) tn

(1 − 4z)n+3/2
.

https://dlmf.nist.gov/15.9
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It follows that (44) holds with

Pn(z) =
2n+1(3/2)n
(n + 2)! F2 1

(
− n/2,(1 − n)/2,−1/2 − n,1 − 4z

)
for n ≥ 0, and (40) follows by an identity for the hypergeometric functions.

Now we are going to prove (42). For r = 1, it can be verified directly. For r ≥ 2, (42) follows from
(40). Indeed, β0,r = 0 because Pr (z) is a polynomial in z and therefore does not have terms with half-
powers of z. In order to calculate α0,r , we note that formulae (40), (41) and (42) imply that

α0,r =
r!
4r

Pr−2

( 1
4

)
=
( r!

4r
)

F2 1

( 3 − r
2
,1 − r

2
,2,1

)
.

We use Gauss’ identity for the hypergeometric function (see Section 1.3 in Bailey (1935)):

F2 1

(
a,b,c,1

)
=
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b) ,

with c = 2, c − a − b = r − 1
2 , c − a = (r + 1)/2, c − b = r/2 + 1, which allows us to evaluate:

α0,r =
Γ(r + 1)

4r
Γ(2)Γ(r − 1

2 )
Γ( 1

2 +
r
2 )Γ(1 +

r
2 )
=
Γ
(
r − 1

2
)

2r
√
π
,

by using the Legendre duplication identity for the gamma function. This completes the proof.

3.3. Proof of Theorem 2 for l = 1

In this section, we will prove a particular case of Theorem 2 in order to illustrate the “dominant balance”
method for q-functional equations.

From (8), for k = 1,2, . . ., we have the following asymptotic expansion around z = 1/4:

∂k

∂qk
F(q,u, z)

��
q=1,u=0 =

αk ,0

(1 − 4z)3k/2−1/2
−

βk ,0

(1 − 4z)3k/2−1
+O

(
(1 − 4z)−(3k/2−3/2)) . (45)

In order to determine coefficients αk ,0 and βk ,0, we change the variables 1 − q = ε3, 1 − 4z = sε2 (and
we set u = 0). Then, we define F̂(s,ε) := F(q,u, z)

��
u=0 and look for the following expansion of F̂(s,ε):

F̂(s,ε) = 2 + F0(s)ε + F1(s)ε2 + . . . , (46)

where Fi(s) are Laurent series in powers of s1/2. More precisely,

F0(s) =
∞∑
k=0

f (0)
k

s3k/2−1/2
and F1(s) =

∞∑
k=0

f (1)
k

s3k/2−1
. (47)

For the terms in these expansions we have

f (0)
k

s3k/2−1/2
ε =

f (0)
k

(1 − q)
3k−1

3

(1 − 4z) 3k−1
2

(1 − q)
1
3 =

f (0)
k

(1 − q)k

(1 − 4z) 3k−1
2

,
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f (1)
k

s3k/2−1
ε2 =

f (1)
k

(1 − q)
3k−2

3

(1 − 4z) 3k−2
2

(1 − q)
2
3 =

f (1)
k

(1 − q)k

(1 − 4z) 3k−2
2

.

If we differentiate these expressions k times over q, set q = 1, and compare the result with (45), then
we find that for k ≥ 0, we have the relations

(−1)k k! f (0)
k
= αk ,0 and (−1)k k! f (1)

k
= −βk ,0. (48)

In terms of new variables s and ε, the transformation z → qz can be expressed as follows:

s → s′ =
1 − 4qz
ε2 =

1 − (1 − ε3)(1 − sε2)
ε2 = s + ε(1 − sε2).

So the functional equation (18) can be re-written as follows (after setting u = 0):

F̂(s,ε) = 1

1 − 1
4 (1 − sε2)F̂(s + ε(1 − sε2),ε)

. (49)

We substitute (46) in (49) and expand the result in powers of ε. The expansions of Fi
(
s+ ε(1− sε2)

)
over the small parameter ε lead to appearance of terms F ′

i (s), F ′′
i (s), and so on. Equating coefficients

before ε and ε2 on the left and the right hand sides of the expansion of (49) leads to the following
differential equations:

F ′
0(s) = 2s − 1

2

(
F0(s)

) 2
, (50)

F ′
1(s) = F0(s)

(
2s − F1(s) −

1
2

F ′
0(s)

)
− 1

2
F ′′

0 (s). (51)

Using (50), equation (51) can be simplified to the following form:

F ′
1(s) = F0(s)

(
2s − F1(s)

)
− 1. (52)

As a remark, equations (47), (50) and (52) imply the following recursions: f (0)0 = 2, f (0)1 = −1/2,

f (1)0 = 2, f (1)1 = −3/2, and for n ≥ 2:

f (0)n =
3n − 4

4
f (0)
n−1 −

1
4

n−1∑
i=1

f (0)i f (0)n−i,

f (1)n =
3n − 5

4
f (1)
n−1 −

1
2

n−1∑
i=1

f (0)i f (1)n−i .

The first of these recursions is equivalent to the Takácz recursion for the main asymptotic term of the
area distribution moments and the second recursion can be used to extract the first order corrections to
these moments.

Now we turn to the expansion

∂k

∂qk
∂

∂u
F(q,u, z)

���
q=1,u=0

=
αk ,1

(1 − 4z)3k/2+1/2
−

βk ,1

(1 − 4z)3k/2
+O

(
(1 − 4z)−(3k/2−1/2)) .
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We use the same change of variables as before and define

Ĝ(s,ε) :=
∂

∂u
F(q,u, z)

���
u=0
.

From (43),

∂

∂u
F(q,u, z)

��
q=1,u=0 =

1
2

1
√

1 − 4z
− 1

2
=

1
2

s−1/2ε−1 − 1
2
,

and the expansion for Ĝ(s,ε) has the form:

Ĝ(s,ε) = ε−1(G0(s) +G1(s)ε +G2(s)ε2 + . . .), (53)

where Gi(s), i = 0,1,2, . . ., can be written as Laurent series in the powers of s1/2. In particular,

G0(s) =
∞∑
k=0

g
(0)
k

s3k/2+1/2
and G1(s) =

∞∑
k=0

g
(1)
k

s3k/2
. (54)

Then, by an argument similar to the argument before (48), for k ≥ 0, we have the relations

(−1)k k!g(0)
k
= αk ,1 and (−1)k k!g(1)

k
= −βk ,1. (55)

As the relevant functional equation, we use (19), which in the new coordinates and for u = 0 can be
written as

Ĝ(s,ε) = 1
4
(1 − sε2)

(
F̂(s,ε)

) 2 (
1 + Ĝ(s + ε(1 − sε2),ε)

)
. (56)

After we substitute (46) and (53) in this equation and collect terms before powers of ε, we obtain
several differential equations. The coefficient before ε−1 is identically 0 and the coefficients before ε0

and ε give the following equations:

G′
0(s) = −

(
1 + F0(s)G0(s)

)
, (57)

G′
1(s) = −

1
4

F2
0 (s)G0(s) +

(
s − F1(s)

)
G0(s) − F0(s)

(
1 +G1(s) +G′

0(s)
)
− 1

2
G′′

0 (s). (58)

The second equation can be slightly simplified by using the first one:

G′
1(s) = −

3
4

F0(s)
(
1 +G′

0(s)
)
+
(
s − F1(s)

)
G0(s) − F0(s)G1(s) −

1
2

G′′
0 (s). (59)

These equations can be easily converted to recursions for g(0)
k

and g
(1)
k

. However, we will use a different

approach in order to relate g
(0)
k

and g
(1)
k

to f (0)
k

and f (1)
k

, respectively.

Lemma 8. G0(s) = − 1
2 F ′

0(s) and G1(s) = 1
2 − 1

2 F ′
1(s).

Proof. If we try − 1
2 F ′

0(s) instead of G0(s) in (57), we get

−1
2

F ′′
0 (s) = −

(
1 − F0(s)

1
2

F ′
0(s)

)
= −1 +

1
4

(
F0(s)2

) ′
, or

F ′′
0 (s) = 2 − 1

2

(
F0(s)2

) ′
,
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which is an immediate consequence of (50). It follows that − 1
2 F ′

0(s) satisfies the same differential
equation as G0(s). In addition, we can check that the leading term in the expansion (47) for F0(s) is
−2s1/2 and the leading term in the expansion (54) for G0(s) is 1

2 s−1/2.
Indeed, the leading term for F0(z) is f (0)0 s1/2 = α0,0s1/2 by (47) and (48), and by defining expansion

(8), α0,0 is the coefficient before
√

1 − 4z in the expansion of D(q,u, z)|q=1,u=0 in powers of 1−4z. From
(25), we can read it off as α0,0 = −2. Then, the leading term for G0(s) is g(0)0 s−1/2 = α0,1s−1/2 = 1

2 s−1/2

by Proposition 5.
This imply that G0(s) and − 1

2 F ′
0(s) have the same leading terms. Together with the fact that these

functions satisfy the same differential equation (57), this implies that G0(s) = − 1
2 F ′

0(s).
The second claim is proved similarly by substituting − 1

2 F ′
0(s) and 1

2 − 1
2 F ′

1(s) instead of G0(s) and
G1(s) in (59) and using equations (50) and (52) to eliminate the derivatives of F0(s) and F1(s). This
shows that 1

2 −
1
2 F ′

1(s) satisfies the same differential equation as G1(s). Then one can check the equality
of the leading terms in the corresponding expansions.

Indeed, F1(s) = f (1)0 s+ . . . = −β0,0s+ . . ., and −β0,0 is the coefficient before (1−4z) in the expansion

of D(q,u, z)|q=1,u=0 in powers of 1 − 4z. From (25), we read it off as −β0,0 = 2. Then, G1(s) = g(1)0 +

g
(1)
1 s−3/2+ . . . and g

(1)
0 = −β0,1 = − 1

2 from Proposition 5. Therefore, G1(s) and 1
2 −

1
2 F ′

1(s) have the same
leading term and satisfy the same differential equation, so we can conclude that G1(s) = 1

2 −
1
2 F ′

1(s).

Equations G0(s) = − 1
2 F ′

0(s) and G1(s) = 1
2 − 1

2 F ′
1(s), and expansions (47) and (54) imply that for all

k ≥ 1,

g
(0)
k
=

3k − 1
4

f (0)
k
,

g
(1)
k
=

3k − 2
4

f (1)
k
.

Then, in terms of coefficients α and β, the second of these equations can be re-written as

βk ,1 =
3k − 2

4
βk ,0, (60)

where we used (48) and (55). This is exactly the identity (15) that we needed to prove Theorem 2 for
the case l = 1.

3.4. Proof of Theorem 2

We have the expansion

∂k

∂qk
∂l

∂ul
F(q,u, z)

���
q=1,u=0

=
αk ,l

(1 − 4z)3k/2+l−1/2
−

βk ,l

(1 − 4z)3k/2+l−1
(61)

+O
(
(1 − 4z)−(3k/2+l−3/2)) .

We use the following scaling: 1 − q = ε3, 1 − 4z = sε2, u = tε2 and define

F̂(s, t,ε) = F(q,u, z).
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Note that the transformation z → qz can be expressed as follows:

s → s′ =
1 − 4qz
ε2

=
1 − (1 − ε3)(1 − sε2)

ε2
= s + ε(1 − sε2).

Then the functional equation (18) can be written as

F̂(s, t,ε) = 1

1 − 1
4 tε2(1 − sε2) − 1

4 (1 − sε2)F̂
(
s + ε(1 − sε2), t,ε

) . (62)

We look for solution in the form:

F̂(s, t,ε) = 2 + (2s − t/2)ε2 + ε
(
F0(s, t) + F1(s, t)ε + F2(s, t)ε2 + . . .

)
. (63)

(The term (2s− t/2)ε2 is for convenience in some further calculations.) Before analyzing (62) and (63),
let us explain what is the ultimate goal.

Since the change of variables 1 − q = ε3, 1 − 4z = sε2, u = tε2 implies that

∂l f (q,u, z)
∂tl

= ε2l ∂
l f (q,u, z)
∂ul

,

we have for l ≥ 1,

∂l

∂ul
F(q,u, z)

���
u=0
= ε1−2l

(
Fl,0(s) + Fl,1(s)ε + Fl,2(s)ε2 + . . .

)
, (64)

where

Fl,i(s) =
∂l

∂tl

(
(2s − t/2)δi,1 + Fi(s, t)

) ���
t=0
, (65)

with δi,1 = 1 if i = 1 and zero otherwise.
The coefficients in this expansion have Laurent series

Fl,i(s) =
∞∑
k=0

fk ,l,i
s3k/2+l−1/2−i/2

. (66)

Consider a specific term in the expansion (64):

Fl,iεi+1−2l =

∞∑
k=0

fk ,l,i
s3k/2+l−1/2−i/2

εi+1−2l =

∞∑
k=0

fk ,l,i(
(1 − 4z)/ε2

) 3k/2+l−1/2−i/2
εi+1−2l

=

∞∑
k=0

fk ,l,i
(1 − 4z)3k/2+l−1/2−i/2

ε3k =

∞∑
k=0

fk ,l,i
(1 − 4z)3k/2+l−1/2−i/2

(1 − q)k .

Differentiate this series k-times with respect to q, set q = 0, and compare with (61). We find that

αk ,l = (−1)k k! fk ,l,0,

−βk ,l = (−1)k k! fk ,l,1, (67)
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valid for k, l ≥ 1. We are looking for relations between fk ,l,1 for different l, since this would give us
the desired relation between coefficients βk ,l for different l. More generally, we will look for relations
between Fl,1(1), or, in other words (∂lt)F1(s, t) for different l. We will also need relations between
(∂lt)F0(s, t).

We substitute expansion (63) in equation (62) and expand the result in powers of ε. Then, we find
that for powers 0 and 1 the equation is satisfied trivially, and for powers 2 and 3, we get the following
differential equations satisfied by F0(s, t) and F1(s, t):

∂sF0 = 2s − t − 1
2

(
F0

) 2
, (68)

∂sF1 = −F0F1 − 1
2

F0∂sF0 − 1
2
∂ssF0. (69)

Proposition 9. For all k ≥ 1, we have

∂k

∂tk
F0(s, t) =

(
− 1

2

) k ∂k
∂sk

F0(s, t). (70)

Proof. Let F0
t (s, t) = ∂

∂t F0(s, t) and F0
s (s, t) = ∂

∂s F0(s, t). (To make the notation less cumbersome, we
omit the superscript 0 for function F0(s, t), F0

t (s, t), and F1
s (s, t) in the following.) If we differentiate

equation (68) either by t or by s, we get differential equations for these functions:

∂sFt = −1 − 2FtF, and (71)

∂sFs = 2 − 2FsF, (72)

respectively. The functions Ft and Fs are determined by these equations and initial conditions. If we
try − 1

2 Fs as a possible solution of (71), i.e., if we substitute Ft = − 1
2 Fs in (71), then it becomes:

−1
2
∂sFs = −1 + FsF,

which holds because it is the consequence of (72). It follows that − 1
2 Fs satisfies the same differential

equation (71) as Ft .
In addition, we have formula (43) for F(q,u, z)|q=1. If we do a change of variables (z,u,q) → (s, t,ε)

and expand the result in powers of ε, then we get:

Fsing(s, t,ε) = 2 −
√

4s − 2tε + (2s − t/2)ε2 + . . . , (73)

which implies that the equation F0
t = − 1

2 F0
s holds at the surface q = 1 near the singular point for

function F0(s, t) =
√

4s − 2t. So, this equality holds in general. The validity of this equation shows that
the claim of the proposition holds for k = 1.

We proceed by induction over k. Differentiating (71) further k − 1 times over t or s, respectively, we
obtain the expressions

∂s∂
k
t F =

k∑
0≤i≤ j≤k
i+j=k

ai, j(∂it F)(∂ jt F) and ∂s∂ks F =
∑

0≤i≤ j≤k
i+j=k

ai, j(∂isF)(∂ js F), (74)
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where, by convention, ∂0
s F = ∂0

t F := F, and ai, j are some coefficients, with a0,k = −2. For the inductive
step, assume that ∂it F =

(
− 1

2
) i
∂isF for all i < k. Then, the first of the above equations becomes:

∂s∂
k
t F = −2F(∂kt F) +

∑
0≤i≤ j≤k−1

i+j=k

ai, j
(
− 1

2

) k
(∂isF)(∂ js F). (75)

We consider this equation as an equation for function ∂kt F. It is clear that
(
− 1

2
) k
∂ks F also satisfies

this equation since upon substitution of ∂kt F :=
(
− 1

2
) k
∂ks F, the equation (75) becomes a consequence

of the second equation in (74). Since ∂kt F :=
(
− 1

2
) k
∂ks F holds also for the singular solution (73), we

conclude that it holds in general.

Proposition 10. For all k ≥ 1, we have

∂k

∂tk
F1(s, t) =

(
− 1

2

) k ∂k
∂sk

F1(s, t).

Proof. Here we start with equation (69). Differentiating it over t and s, respectively, we find

∂sF1
t = −F0

t F1 − F0F1
t − 1

2
F0
t F0

s − 1
2

F0F0
t ,s −

1
2

F0
t ,ss (76)

and

∂sF1
s = −F0

s F1 − F0F1
s − 1

2
F0
s F0

s − 1
2

F0F0
ss −

1
2

F0
sss . (77)

From Proposition 9, we have F0
t = − 1

2 F0
s . We plug this identity in equation (76) and find:

− 2∂sF1
t = −F0

s F1 + 2F0F1
t − 1

2
F0
s F0

s − 1
2

F0F0
ss −

1
2

F0
sss . (78)

We are looking at this equation as a differential equation for F1
t and try F1

t := − 1
2 F1

s as a possible
solution. We plug this function in equation (78), and see that it it is a valid solution because of equation
(77). Referring to (73), we find that this equality holds also for F1

sing = 0. We conclude that it holds in
general.

For the case k ≥ 2 we differentiate further. We differentiate equations of type (77) over s and equa-
tions of type (78) over t. While differentiating over t, we use the identities ∂kt F0 = (−1/2)k∂ks F0, and
the identities ∂ jt F1 = (−1/2)j∂ js F1, which by inductive assumption are known for j < k. As a result, at
every step, we obtain equations of the form:

∂k+1
s F1 = −F0(∂ks F1) −

k−1∑
i=0

ai, j(∂isF1)(∂k−is F0) −
∑

0≤i≤ j≤k
i+j=k

bi, j(∂isF0)(∂ js F0) − 1
2
∂k+2
s F0, (79)

and

(−2)k∂s(∂kt F1) = (80)

= −(−2)kF0(∂kt F1) −
k−1∑
i=0

ai, j(∂isF1)(∂k−is F0) −
∑

0≤i≤ j≤k
i+j=k

bi, j(∂isF0)(∂ js F0) − 1
2
∂k+2
s F0,



Joint distribution of the area and the number of peaks 2719

and we observe that ∂kt F1 defined as (−1/2)k∂ks F1 satisfies the second equation because it reduces this
equation to the first one. (In the next step, we differentiate (79) over s and (80) over t, multiply the
result of the latter by −2 and proceed to the next inductive step.)

We use relations (66), (67) and (65) in order to rewrite Proposition 10 in the following form:

∞∑
k=0

βk ,l/k!
s3k/2+l−1

=
(
− 1

2

) l ∂l
∂sl

( ∞∑
k=0

βk ,0/k!
s3k/2−1

)
. (81)

Here we used i = 1 and l ≥ 2. (The case l = 1 was handled in the previous section.) In terms of coeffi-
cients βk ,l this means

βk ,l =
( 1

2

) l ( 3k
2

− 1
) 3k

2
× . . . ×

( 3k
2
+ l − 2

)
βk ,0. (82)

This is the identity (12) that we needed to prove the general case of Theorem 2.
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