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♡ SECTION 1

Survival Models

The primary responsibility of the life insurance actuary is to maintain
the solvency and profitability of the insurer.

Consider, for example, a whole life insurance contract issued to a life
aged 50. This contract will pay a fixed sum at the death of the insured
individual. This individual will pay monthly premiums, which will be
invested by the insurer to earn interest; the accumulated premiumsmust
be sufficient to pay the benefit, on average.

To ensure this goal, the actuary needs to model the survival probabil-
ities of the policyholder, likely investment returns and likely expenses.
The actuary may also take into consideration the probability that the
policyholder decides to terminate the contract early.

In addition, the actuary must determine howmuchmoney the insurer
should hold to ensure that future liabilities will be covered with ade-
quately high probability.

To achieve these goals we need to have a mathematical model of a life,
a human life or a work-life of an equipment.

section 1.1

Survival fun�ion

Let a positive random variable X represent the duration of a life. We
call X the age-at-death or age-at-failure.

Definition 1.1. The survival function of a positive random variableX is

SX(t) = P (X > t) = 1− FX(t),

where FX (t) is the cumulative distribution function of X.

Intuitively, this is the probability to survive more than t units of time.
From the properties of the cumulative distribution function, it follows

that the survival function is non-decreasing, S (∞) = 0, and S (0) = 1.
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Example1.2. 1 Determine which of the following functions is a survival
function of a nonnegative r.v.:
(i)

S(x) =
2

x+ 2
,

(ii)

S(x) =
1 + 2

x+2

2
,

(iii)
S(x) = (1− x)e−x,

(iv)
S(x) = (1 + x)e−x,

(v)

s(x) =

1− x2

10,000
for 0 ≤ x ≤ 100,

0 for 100 < x.

Exercise1.3. 2 Find the density function for the following survival func-
tions:

(1) S(x) = (1 + x)e−x, for x ≥ 0.

(2) S(x) =

1− x2

10,000
for 0 ≤ x ≤ 100,

0 for 100 < x.

(3) S(x) = 2
x+2

, for x ≥ 0.

section 1.2

Expe�ation and survival fun�ion

Recall the usual definition of the expectation of a random variable.

Definition 1.4. The expectation of a function g(X) of a random vari-
able X is

E[g(X)] =
∑
x

g(x)P{X = x}+
∫

g(x)fX(x) dx,

where f(x) is the density of X .
1Biespiel = Example in German
2Ubung = Exercise in German
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This definition is general in the sense that it applicable for random
variables that have both discrete and continuous components.

Often, to find expectations, instead of the density we will use the sur-
vival function.
Satz 1.5.
a Let X be a non-negative random variable with survival function S that has
a finite or countable number of discontinuities. Suppose thatH : R+ → R is a
continuous functionwhich is differentiable everywhere except for a finite number
of points. Then,

E[H(X)] = H(0) +

∫ ∞

0

S(t)H ′(t) dt.

aSatz = Theorem in German

Proof. Given a set A ⊆ R, the indicator function of A is the function

IA(t) = I(t ∈ A) =

1 if t ∈ A

0 if t ̸∈ A

Since

H(x)−H(0) =

∫ x

0

H ′(t) dt =

∫ ∞

0

I[0,x](t)H
′(t) dt,

therefore

E[H(X)]−H(0) =

∫ ∞

0

E
[
I[0,X](t)

]
H ′(t) dt.

Note that E
[
I[0,X](t)

]
= P{X ≥ t} = S(t) + P{X = t}. So,

E[H(X)]−H(0) =

∫ ∞

0

S(t)H ′(t) dt+

∫ ∞

0

P{X = t}H ′(t).dt

The second integral is zero because the function P{X = t} can be
different from zero only at a finite or countable number of points. □

Corollary 1.6.
LetX be a nonnegative r.v. with survival function S. Then,

E[X] =

∫ ∞

0

S(t) dt.
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Corollary 1.7.
LetX be a nonnegative r.v. with survival function S. Then,

E[Xp] =

∫ ∞

0

S(t)ptp−1 dt,

if p > 0.

Question: E[X2] =?

Corollary 1.8.
LetX be a non-negative r.v. with survival function S. Let a ≥ 0. Then,

E[min(X, a)] =

∫ a

0

S(t) dt.

Corollary 1.9.
Let X be a non-negative r.v. with survival function S. Let δ > 0. Then,
E[e−δX ] = 1−

∫∞
0

δe−δtS(t) dt.

Exercise 1.10. Let SX(x) = e−x(x+ 1), x ≥ 0.
E(X) = ? E(X ∧ 10) = ?

Theorem 1.5 can be written in a different way ifX is a discrete random
variable.

Satz 1.11.
LetX be a discrete random variable whose possible values are positive integers.
Suppose thatH : R+ → R is a continuous function which is differentiable ev-
erywhere except for a finite number of points. Assume that Pr{X = 0} = 0.
Then,

E[H(X)] = H(0) +
∞∑
k=1

Pr{X ≥ k}
[
H(k)−H(k − 1)

]
.

Proof: by Theorem 1.5 on page 5,

E[H(X)] = H(0) +

∫ ∞

0

S(t)H ′(t) dt

= H(0) +
∞∑
k=1

∫
t∈(k−1,k]

S(t)H ′(t) dt



VLADISLAV KARGIN 7

Next, we use the definition of S(t) and the fact that Pr{X > t} =

Pr{X ≥ k} for every t ∈ (k − 1, k].

E[H(X)] = H(0) +
∞∑
k=1

Pr{X ≥ k}
∫ k

k−1

H ′(t) dt

= H(0) +
∞∑
k=1

Pr{X ≥ k}(H(k)−H(k − 1)).

□
By taking H(x) = x, we find

E[X] =
∞∑
k=1

Pr{X ≥ k} =
∞∑
k=1

(
S(k) + Pr{X = k})

Since
∑∞

k=1 Pr{X = k} = Pr{X > 0} = S(0), we obtain a useful
formula:

(1) E[X] =
∞∑
k=0

S(k).

In a similar fashion we can get two analogous formulae:

(2) E[X2] =
∞∑
k=1

Pr{X ≥ k}(k2 − (k− 1)2) =
∞∑
k=1

Pr{X ≥ k}(2k− 1),

and

(3) E[min(X,n)] =
n∑

k=1

Pr{X ≥ k}, n ≥ 1.

Exercise 1.12. Find E[X] and E[X2] if
k 0 1 2

Pr{X = k} 0.2 0.3 0.5



8 1. SURVIVAL MODELS

section 1.3

A�uarial notation

Let (x) denote a life that survives to the age x. The life (x) is called a
life-age-x or a life aged x.

Definition 1.13. The future lifetime of (x) is denoted by Tx. By defi-
nition, Tx = X − x.

The quantity Tx is especially important for an insurer and is called
time-until-death of the life-age-x.

Note that Tx is defined only for a life which survives to age x. In
particular Tx has the distribution of X − x conditioned on the event
X > x.

The survival function of Tx is denoted by tpx. It is the probability that
a life aged x survives t more years.

(4) tpx = P{X > x+ t|X > x} =
S(x+ t)

S(x)
,

The cumulative distribution function of Tx is

tqx := 1− tpx = 1− S(x+ t)

S(x)
.

The density of Tx is

fTx(t) = − d

dt

S(x+ t)

S(x)
=

fX(x+ t)

S(x)
.

Exercise 1.14. Consider the survival function SX(t) = 90−t
90

, for 0 <

t < 90. Find the survival function and the probability density function
of T30.

Other notation:
• For simplicity, we denote 1px and 1qx by px and qx, respectively.

For example, px is the probability that a life aged x survives one
year. The variable qx is often called the mortality rate.

• Given x, s, t > 0, s|tqx represents the probability of a life just
turning age x will die between ages x+ s and x+ s+ t, i.e.,
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s|tqx = P{s < Tx ≤ s+ t} =
S(x+ s)− S(x+ s+ t)

S(x)
.

These quantities are called the deferred mortality probabilities.
The symbol s|t means deferred for s years and happening within
the next t years.

From the definitions, it is clear that

s|tqx = spx − s+tpx = s+tqx − sqx = spx × tqx+s.

• For simplicity, s|1qx is denoted s|qx.

Since tpx is the survival function of Tx, we can calculate the density of
Tx using tpx.

fT (x)(t) = − d

dt
tpx.

Conversely,

tpx =

∫ ∞

t

fT (x)(s)ds.

Exercise 1.15.
Suppose that S(t) = 85−t

85
, 0 ≤ t ≤ 85.

(i) Calculate tp40, 0 ≤ t ≤ 45.

(ii) Calculate the density function of T40.

Exercise 1.16.
Suppose that tpx = 1− t

90−x
, 0 ≤ t ≤ 90− x.

(i) Find the probability that a 25-year-old reaches age 80.
(ii) Find the density of Tx.
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Satz 1.17.
For each t, s ≥ 0,

t+spx = tpx · spx+t.

More generally, for each t1, . . . , tm ≥ 0,

t1+...+tmpx = t1px · t2px+t1 · . . . · tmpx+t1+...+tm−1 .

Proof: The first equation easily follows by using (4).

t+spx =
S(x+ t+ s)

S(x)
=

S(x+ t+ s)

S(x+ t)

S(x+ t)

S(x)

= spx+t · tpx,

It expresses the fact that to survive for t+ s years you need to survive t
years and then survive s more years. The second equation easily follow
by induction. □

In particular, we have

npx = pxpx+1 . . . px+n−1.

Also, we have identities

nqx = 0|qx + 1|qx + . . .+ n−1|qx,

and
nqx = 0pxqx + 1pxqx+1 + . . .+ n−1pxqx+n−1,

where we set 0px = 1.
The first identity reflects the fact that the event of dying before year

n + 1 is the disjoint union of the events of dying in one of the years
t = 1, . . . , n and the probability that an individual aged-x dies at year t
equals t−1|qx.

The second identity follows because t−1|qx = t−1pxqx+t−1

Exercise 1.18.
(i) Suppose that probability that a 30-year-old reaches age 40 is 0.95, the
probability that a 40-year-old reaches age 50 is 0.99, and the probability
that a 50-year-old reaches age 60 is 0.95. Find the probability that a 30–
year–old reaches age 60.
(ii) Suppose that probability that a 35-year-old reaches age 60 is 0.80,
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and the probability that a 50-year-old reaches age 60 is 0.90. Find the
probability that a 35-year-old will survive to age 50.

Exercise 1.19. Suppose that the survival function of a person is given
by SX(x) =

90−x
90

, for 0 ≤ x ≤ 90. Given a married couple with husband
aged 40 and wife aged 35, what is the probability that the husband will
die before age 60 and the wife will survive to age 75?

Exercise 1.20. Suppose that

k 29 30 31 32 33 34 35 36
pk 0.99 0.98 0.97 0.96 0.96 0.95 0.94 0.93

Find the probability that a 30-year old survives to age 35.

Exercise 1.21. Suppose that:
(i) The probability that a 30-year-old will die in less than one year is 0.012
(ii) The probability that a 31-year-old will die in less than one year is
0.013

(iii) The probability that a 32-year-old will die in less than one year is
0.014.
Find the probability that a 30-year-old will die in less than three years.

Exercise 1.22. Suppose that the survival function of a person is given
by SX(x) =

90−x
90

, for 0 ≤ x ≤ 90

(i) Find s|tqx, for 0 < x, s, t, and x+ s+ t ≤ 90.

(ii) Find the probability that a 30-year-old dies between ages 55 and 60.

Exercise 1.23. Suppose that the survival function of a person is given
by SX(x) =

906−x6

906
, for 0 ≤ x ≤ 90

(i) Find s|tqx, for 0 < x, s, t, and x+ s+ t ≤ 90.

(ii) Find the probability that a 30-year-old dies between ages 55 and 60.

Exercise 1.24. Suppose that:
(i) The probability that a 30-year-old will reach age 60 is 0.90.
(ii) The probability that a 30-year-old will reach age 50 is 0.95.
Find the probability that a 30-year-old will die between age 50 and 60.

Exercise 1.25. Suppose that:
(i) The probability that a 30-year-old will die between ages 40 and 60 is
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0.20.
(ii) The probability that a 15-year-old will reach age 30 is 0.95.
Find the probability that a 15-year-old will die between ages 40 and 60.
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section 1.4

Force of mortality

Definition 1.26. The force ofmortality at age x is defined as

µx = − d

dt

∣∣∣
t=0

(tpx) =
fX(x)

SX(x)
= − d

dx
logSX(x).

The above showed that the force of mortality can be computed if we
know the survival function S(x). In the other direction, by the Newton-
Leibniz formula,

SX(x) = exp
(
−
∫ x

0

µt dt

)
.

The force of mortality µx gives us the rate at which lives aged x die
off. If t is not large, the proportion of people age x who will die within
t years is approximately tµx.

For example, if µx = 0.06, we expect that from each 1, 000 individuals
with age x approximately (1000)(0.06)t = 60t individuals will die within
t years, where t is small. In particular, we expect that about 60 1

12
= 5

individuals will die within a month.

Example1.27. Find the force ofmortality of the survival functionSX(x) =
906−x6

906
, for 0 < x < 90.

We have the following characterization of the force of mortality func-
tions.
Satz 1.28.
Letµt : R+ → R be a functionwhich is continuous everywhere except at finitely
many points. Then, µt is the force of mortality ofX if and only if two conditions
hold:
(i) µt ≥ 0 for all t ≥ 0 except possibly the discontinuity points.
(ii)
∫∞
0

µt dt = ∞.

Example 1.29. Determine which of the following functions is a legiti-
mate force of mortality of an age-at-death:
(i) µ(x) = 1

(x+1)2
.



14 1. SURVIVAL MODELS

(ii) µ(x) = x sin x.
(iii) µ(x) = 35.

Example 1.30. For the force of mortality µ(x) = 1
x+1

find SX , fX , tpx
and fT (x).

Satz 1.31.
IfX is continuous, then the force of mortality of T (x) is

µT (x)(t) = µX(x+ t).

In words, for a life aged x, the force of mortality t years later is the force of mor-
tality for a (x + t)-year old.
Proof: The survival function of T (x) is SX(x+t)

SX(x)
. Hence,

µT (x)(t) = − d

dt
log SX(x+ t)

SX(x)
=

fX(x+ t)

SX(x+ t)
= µX(x+ t).

□

Example 1.32. You are given that tq40 = 40t+t2

6000
for 0 ≤ t ≤ 60. Find

µ(60).

Example 1.33. Suppose that the survival function of a new born is
SX(t) =

854−t4

854
, for 0 < t < 85.

(i) Find the force of mortality function of a new born.
(ii) Find the force of mortality function of a life aged 20.
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section 1.5

Expe�ation of Life

Definition 1.34. The life expectancy of a newborn is ◦
e0 = E[X].

The expectation ◦
e0 is also called the complete expectation of life

at birth. The following theorem follows from Corollaries 1.6 and 1.7.
Satz 1.35.
LetX be an age-at-death random variable. Then,

◦
e0 =

∫ ∞

0

S(x) dx

and
EX2 =

∫ ∞

0

2xS(x) dx.

Using the previous theorem, we can find the variance of X, Var(X) =

E[X2]− (E[X])2.

Example 1.36. An actuary models the lifetime in years of a random
selected person as a random variable X with survival function SX(x) =
906−x6

906
, for 0 < x < 90. Find ◦

ex and Var(X) using the survival function
of X .

Definition 1.37. The expected future lifetime at age x is ◦
ex =

E[T (x)] = E[X − x|X > x].

The expectation ◦
ex is also called the complete expectation of a life

at age x.
Satz 1.38.

◦
ex =

∫ ∞

0
tpx dt =

∫ ∞

0

S(x+ t)

S(x)
dt.

Proof. It is enough to notice that tpx is the survival function for the life
aged x. □

Example 1.39. An actuary models the lifetime in years of a random
selected person as a random variable X with survival function S(x) =
906−x6

906
, for 0 < x < 90. Find ◦

e30 using the survival function of T (30).
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Definition 1.40. Then-yeartemporarycomplete lifeexpectancy
is the expected number of years lived between age x and age x+ n by a
survivor aged x. It is denoted by ◦

ex:n .

Note that the number of years lived between age x and age x+n by a
survivor aged x isT (x), if T (x) < n

n, otherwise.

 = min{T (x), n}.

Hence, ◦
ex:n = Emin{T (x), n}.

Satz 1.41.

◦
ex:n =

∫ n

0
tpx dt.

Proof. The function tpx is the survival function ofT (x). Hence, byCorol-
lary 1.8,

Emin{T (x), n} =

∫ n

0
tpx dt.

□

Satz 1.42.

◦
ex =

◦
ex:n + npx

◦
ex+n

Intuitively, this result says that the expected number of years lived after
age x equals the (expected) number of years lived from age x to age x+n

plus number of years lived after the age x+ n by a survivor at age x+ n

multiplied by the probability that the individual survives to the age x+n.

Proof.

◦
ex =

∫ ∞

0
tpx dt =

∫ n

0
tpx dt+

∫ ∞

n
tpx dt

=
◦
ex:n +

∫ ∞

n
npx · t−npx+n dt

=
◦
ex:n + npx

∫ ∞

0
tpx+n dt =

◦
ex:n + npx

◦
ex+n.

□
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This theorem can be generalized as follows.
Satz 1.43.
For 0 < m < n,

◦
ex:n =

◦
ex:m + mpx

◦
ex+m:n−m

The proof is similar.

Example 1.44. An actuary models the lifetime in years of a random
selected person as a random variable X with survival function S(x) =
906−x6

906
, for 0 < x < 90. Find ◦

e30:10 .

Example 1.45. Assume that
(i) The expected future lifetime of a 40-year old is 45 years.
(ii) The expected future lifetime of a 50-year old is 36 years.
(iii) The probability that a 40-year old survives to age 50 is 0.98.
Find the expected number of years lived between age 40 and age 50 by a
40-year old.

Example 1.46. You are given that:
(i) The expected number of years lived between age 40 and age 50 by a
40-year old is 9.7.
(ii) The probability that a 40-year old survives to age 50 is 0.98.
(iii) The expected number of years lived between age 50 and age 70 by a
50-year old is 19.5.
Find the expected number of years lived between age 40 and age 70 by a
40-year old.
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section 1.6

Future curtate lifetime

Definition 1.47. The future curtate lifetime of a life age x is the random
variable Kx equal to the number of complete future years lived by this
life.

Clearly,

Kx = ⌊Tx⌋.

Definition 1.48. The curtate life expectation of a life-age-x is the expec-
tation of the curtate duration of this life, that is, E[K(x)]. We denote
the curtate life expectation by ex.

Since the curtate life-time is less than life-time, Kx ≤ Tx, hence ex ≤
◦
ex.

Definition 1.49. The expected number of whole years lived in the in-
terval (x, x+ n] by an entity alive at age x is denoted by ex:n .

Obviously ex:n ≤ ◦
ex:n .

Satz 1.50.

ex = E[K(x)] =
∞∑
k=1

k · k|qx =
∞∑
k=1

kpx,

and

E[K(x)2] =
∞∑
k=1

k2 · k|qx =
∞∑
k=1

(2k − 1) · kpx.

Proof. Note that P(K(x) = k) = k|qx and P(K(x) > k) = kpx. Then
the first equalities hold by the definition of the expected values, and the
second equalities follow from formulas (1) and (2) on page 7. □

It follows that

ex =
∞∑
k=1

k−1∏
j=0

px+j.
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Example 1.51. Suppose that

x 90 91 92 93 94
px 0.2 0.1 0.05 0.01 0

Calculate e90.

Example 1.52. Suppose that s(t) = 100−t
100

, for 0 ≤ t ≤ 100. Find ◦
ex and

ex, where 1 ≤ x ≤ 99 is an integer.

The analogue of Theorem 1.50 for ex:n is as follows.

Satz 1.53.

ex:n =
n−1∑
k=1

k · k|qx + n · npx =
n−1∑
k=1

kpx.

Hence,

ex:n =
n∑

k=1

k−1∏
j=0

px+j.

For example,

ex:3 = px + pxpx+1 + pxpx+1px+2.

Satz 1.54.

ex = ex:n + npxex+n.

Example 1.55. Suppose that ex = 30, px = 0.97 and px+1 = 0.95. Find
ex+2 using Theorem 1.54.

Satz 1.56 |Iterative formulas for ex and ex:n |.

ex = px(1 + ex+1)

ex:n = px(1 + ex+1:n−1 ).

Example 1.57. Suppose that ex = 30, px = 0.97 and px+1 = 0.95. Find
ex+2 using Theorem 1.56.
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Satz 1.58.
If px+k = p, for each integer k ≥ 1. Then,

ex =
p

1− p
,

ex:n =
p− pn+1

1− p
.

Example 1.59. Let px+k = p, for each integer k > 0. Find ex for
p = 0.92, 0.95, 0.96, 0.98, 0.99.

section 1.7

Common analytical survival models

Today, actuaries mostly rely on actuarial tables. Still, one should know
the most common analytical survival models. They are De Moivre, gen-
eralized De Moivre, exponential, Gompertz, Makeham, and Weibull
models.

1.7.1 DeMoivremodel

UnderDeMoivre’smodel, deaths happen uniformly on the interval [0, ω],
where ω is the terminal age. The density of the age-at-death is fX(x) =
1
ω
, for 0 ≤ x ≤ ω.
It follows that the survival and mortality functions are

SX(x) = 1− x

w

µ(x) =
1

ω − x

Example 1.60. Suppose that the De Moivre’s law holds and the force
ofmortality of 70- year old is three times the force ofmortality of 35-year
old. Calculate the terminal age.

Satz 1.61.
ForDeMoivre’smortality law,T (x)has a uniformdistribution over the interval
[0, ω − x].
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Proof.

tpx =
s(x+ t)

s(x)
=

ω − x− t

ω − x

Hence, T (x) has a uniform distribution over the interval [0, ω − x]. □

Example 1.62. Find the median of the age-at-death random variable
subject to De Moivre’s law if the probability that a life aged 20 years
survives 40 years is 1

3
.

Satz 1.63.
For DeMoivre’s law,

◦
ex =

w − x

2
,

Var(T (x)) = (w − x)2

12
.

Proof. It follows noticing that T (x) has a uniform distribution over the
interval [0, ω − x]. □

Example1.64. Suppose that the survival of a cohort followsDeMoivre’s
law. Suppose that the expected age-at-death of a new born is 70 years.
Find the mean and the variance of the future lifetime of a 50-year old.

Example1.65. Suppose thatmortality follows deMoivre’s law. If ◦
e3:15 =

13.125, calculate ◦
e30:30 .

Example 1.66. Suppose that mortality follows Moivre’s law with ter-
minal age 110.
(i) Calculate ◦

ex:5 , for x = 20 and x = 100.
(ii) Calculate ◦

e50:n , for n = 5 and n = 30.

Satz 1.67.
Let the mortality follow the De Moivre law with terminal age ω ∈ N, and
suppose that x is an integer between 0 and ω. Then,

(1) K(x) has a uniform distribution over 0, 1, 2, . . . , ω − x− 1.
(2)

ex =
ω − x− 1

2
.

(3)

Var(K(x)) =
(ω − x)2 − 1

12
.
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Proof.

P{K(x) = k} = P{k ≤ Tx < k + 1} =

∫ k+1

k

1

ω − x
dx =

1

ω − x
,

which does not depend on k. This proves (1) and (2) and (3) follow from
(1) by an easy calculation. □

Note that it follows that for the De Moivre law and integer ω and x,
the excess of the future lifetime of (x) over the curtate lifetime of (x) is
uniformly distributed on the interval (0, 1), Hence, ◦

ex − ex = 1
2
.

Example 1.68. Assume the De Moivre law where ω is an integer. The
total curtate expected lifetime of a 40-year old and a 60-year old is 46
years. Find ω.

1.7.2 Constant Force ofMortality

The constant force model assumes that the mortality rate µ is constant
throughout the life.

By integration, the survival function of the constant force model is

S(x) = exp
(
−
∫ x

0

µdt

)
= e−µx.

For this reason the model is also called exponential model.
The constant force model is used in actuarial sciences mostly for in-

terpolation between two known points.
That is, suppose thatS(x) andS(x+n) are known and assume that the

mortality rate between ages x and x + n is constant. Then the survival
function between these ages can be interpolated by

S(x+ t) = S(x)e−µt,

where µ = log
(

S(x)
S(x+n)

)
.

Satz 1.69.
Under constant force of mortality, the lifetime X of a new born and the future
lifetime T (x) of (x) have the same distribution.

Proof.

tpx =
S(x+ t)

S(x)
=

e−µ(x+t)

e−µx
= e−µt.
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That is, the survival function of T (x) is the same as for X . Hence the
distributions are the same. □

Example 1.70. Suppose that:
(i) the force of mortality is constant.
(ii) the probability that a 30-year-old will survive to age 40 is 0.95.

Calculate:
(i) the probability that a 40-year-old will survive to age 50.
(ii) the probability that a 30-year-old will survive to age 50.
(iii) the probability that a 30-year-old will die between ages 40 and 50.

Example 1.71. Suppose that:
(i) the force of mortality is constant.
(ii) the probability that a 30-year-old will survive to age 40 is 0.95. Cal-
culate: (i) the expected future lifetime of a 40-year-old. (ii) the curtate
life expectation of a 40-year-old.

1.7.3 Mixture distributions

Many distributions are defined by using the conditional probability.
Suppose that we know the distribution of X|Y and the distribution of
Y . Then we can find the distribution of X . The distribution of X is
called a mixture distribution.

The conditional expectation E(X|Y ) is a function of the random vari-
able Y and therefore it is itself is a random variable. Hence, we can
calculate its expected value.

Satz 1.72 |Iterated Expe�ations |.

E(X) = E(E(X|Y )).

Satz 1.73 |Iterated Variances |.

Var(X) = Var(E(X|Y )) + E(Var(X|Y )).

Sometimes, these theorems are not sufficient and we need the explicit
expression for the density of a mixture distribution.
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Satz 1.74.
Suppose that random variable Y takes on the values 1, 2, . . . ,m, the conditional
distribution ofX given Y = j has pdf fj and P{Y = j} = pj . Then, random
variableX has pdf f =

∑
j pjfj .

Example 1.75. You are given that:
(a) Men follow a de Moivre model with terminal age 100.
(b) Women follow a de Moivre model with terminal age 110.
(c) 55% of births are male.

(i) Calculate the expectation life of a randomly chosen life.
(ii) Calculate the probability that a newborn survives 80 years.
(iii) Calculate the density of the future lifetime T of a randomly chosen
life.

Another case occurs when the conditioning variable has a continuous
distribution.
Satz 1.76.
Suppose thatX|θ has pdf f(x|θ) and that θ has pdf h. Then,X has pdf

fX(x) =

∫
R
f(x|θ)h(θ)dθ.

Example 1.77. The future lifetime T (x) of a live aged (x) has con-
stant force of mortality µ. Suppose that µ has a uniform distribution
on (0.01, 0.05).
(i) Calculate ◦

ex.
(ii) Calculate Var(T (x)).
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♡ SECTION 2

Using Life Tables

section 2.1

Life Tables

A life table is a bookkeeping system used to keep track of mortality.
Suppose that we track a cohort of lives. At the end of each year, we keep
track of the number of survivors.

Definition 2.1. The number of individuals alive at age x is called the
number living or the number of lives at age x, and denoted lx.

Notice that l0 denotes the initial number of lives, and is called the
radix of a life table.

There are two types of life tables: the cohort (or generation) life table
and the period (or current) life table.

The cohort life table presents the mortality experience of a particular
birth cohort – all persons born in the year 1900, for example – from
the moment of birth through consecutive ages in successive calendar
years. It is usually not feasible to construct cohort life tables entirely on
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Figure 1. A life table for the USA population in 2010

the basis of observed data for real cohorts due to data unavailability or
incompleteness. For example, a life table for a cohort of persons born
in 1970 would require the use of data projection techniques to estimate
deaths into the future.

Unlike the cohort life table, the period life table does not represent
the mortality experience of an actual birth cohort. Rather, the period
life table presents what would happen to a hypothetical cohort if it expe-
rienced throughout its entire life the mortality conditions of a particular
period in time.

Figure 1 is an example of a life table from the website of the Centers
for the Decease Control and Prevention (www.cdc.gov).

This is a period life table for 2010. It assumes a hypothetical cohort
that is subject throughout its lifetime to the age-specific death rates pre-
vailing for the actual population in 2010. The period life table may thus
be characterized as rendering a “snapshot” of current mortality experi-
ence and shows the long-range implications of a set of age-specific death
rates that prevailed in a given year.
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Figure 2. Percent surviving
by Hispanic origin, race, age
and sex: United States, 2010

The life tables can be
different for different seg-
ments of population. To
illustrate this, Figure 2
shows the survival func-
tion for the segments of
the USA population based
on race and gender.

One can clearly see that
the survival function for
Hispanic Females domi-
nates all other survival func-
tions. That is, the prob-
ability to survive to a spe-

cific age is highest for Hispanic Females for every age. This probability
is lowest for Non-Hispanic Black Males.

Definition 2.2. The number of people which died between ages x and
x + t is denoted as tdx = lx − lx+t. In particular, dx ≡ 1dx denotes the
number of people which died between ages x and x+1, i.e. dx = lx−lx+1.

From a life table, we can estimate probabilities and expectations re-
lated with mortality. For example, we can estimate the survival function
of the age-at-death X by s(x) = lx/l0.

Here are several actuarial variables which can be obtained from a life
table:

tpx =
lx+t

lx
,

tqx = 1− lx+t

lx
,

px =
lx+1

lx
,

qx = 1− lx+1

lx
=

dx
lx
,

n|mqx =
lx+n − lx+n+m

lx
.
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Notice that a life table only contains values for non-negative integers.
This will make a challenge to estimate quantities which depend on a
continuous set of values of the survival function. We will consider this
problem later.

Example 2.3. Complete the entries in the following table:
Age lx dx px qx

0 100,000 · · ·
1 97,523 · · ·
2 94,123 · · ·
3 91,174 · · ·
4 87,234 · · ·
5 85,938 – – –

Satz 2.4.
For k, n ≥ 0,

lk+n = lk · pk · pk+1 · · · pk+n−1.

Example 2.5. Using a life table, find:
(1) l10.
(2) d35.
(3) 5d35.
(4) The probability that a newborn will die before reaching 50 years.
(5) The probability that a newborn will live more than 60 years.
(6) The probability that a newborn will die when his age is between

45 years and 65 years old.
(7) The probability that a 25-year oldwill die before reaching 50 years.
(8) The probability that a 25-year old will live more than 60 years.
(9) The probability that a 25-year old will die when his age is between

50 years and 65 years old.

From a life table, we can find the distribution of the curtate lifeK(x).

P{Kx = k} = P{k < T (x) ≤ k + 1}

=
lx+k − lx+k+1

lx

=
dx+k

lx
,
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where k = 0, 1, . . ..
From Theorem 1.50 on page 18, it follows that

ex =
∞∑
k=1

lx+k

lx
,(5)

E[K(x)2] =
∞∑
k=1

(2k − 1)
lx+k

lx

In addition,

(6) ex:n =
n∑

k=1

lx+k

lx
.

Example 2.6. Consider the life table
x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0
(1) Calculate dx, x = 80, 81, . . . , 86.
(2) Calculate the probability mass function of the curtate life K(80).
(3) Calculate e80 andVar(K(80)) using the probability mass function

of K(80).
(4) Calculate e80 and Var(K(80)) using (5).
(5) Calculate e80:3 using (6).
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section 2.2

Continuous Calculations Using Life Ta-

bles

The main use of life tables is being an input to mathematical models.
A mathematical model is a sketch that represents a problem in a sim-

pler way. It is a simplified version of a situation in the real world.
Most automobile insurance companies use mathematical models to

determine your monthly payment. Information about your age, how far
you drive to work or school, what kind of car you have, how old it is, etc
is collected. Then, based on this information, you get an insurance rate.
This insurance rate depends on how likely you are to file a claim on your
insurance. The more likely the computer thinks you are to file a claim,
the higher your insurance rate.

Similar models are used for life insurance and home-owners insurance
policies.

One problem is that many mathematical models use continuous time
and the life tables are able to provide only discrete-time data. A standard
approach to this problem is to determine lx for each real number x ≥ 0

by interpolation. Namely, we use lx and lx+1, where x is an integer, and
approximate lx+t by interpolating for t ∈ (0, 1).

Next, knowing lx for all real positive x, we can find the survival func-
tion tpx = lx+t/lx. Then, all the theory from Section 1 can be applied.

In practice, the most popular is the linear interpolation, which cor-
responds to the arithmetic average of two numbers. Another method
which is used less frequently is the exponential, that corresponds to the
geometric average. The differences between the results of these meth-
ods is small.
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2.2.1 Linear interpolation

First, we consider linear interpolation for a function f . Suppose that we
know the values of f , for x1 < x2 < . . . < xn.

We estimate the value of f at x ∈ [xj−1, xj] by drawing a straight line
between points (xj−1, f(xj−1)) and (xj, f(xj)) and choosing f(x) in such
a way that the point (x, f(x)) is also on this straight line.

This implies that

f(x)− f(xj−1)

x− xj−1

=
f(xj)− f(xj−1)

xj − xj−1

,

and therefore,

f(x) =
xj − x

xj − xj−1

f(xj−1) +
x− xj

xj − xj−1

f(xj)

Example 2.7. Suppose that f(0) = 10, f(2) = 14, f(5) = 26. Using
linear interpolation determine f(x), 0 ≤ x ≤ 5.

The linear interpolation model is also called “the uniform distribution
of deaths” (UDD) model, and the survival function in this model can be
written as

lx+t = lx + t(lx+1 − lx) = lx − t · dx,

where 0 ≤ t ≤ 1.

Example 2.8. Using a life table and assuming a uniform distribution of
deaths, find:
(i) 0.5p35,
(ii) 1.4p35.3.

Satz 2.9.
Given t ≥ 0, let k be the nonnegative integer such that k ≤ t < k + 1. Then,
under uniform interpolation,

s(t) =
1

l0
(lk − (t− k)dk).

fX(t) =
dk
l0

= k|q0.

fT (x)(t) =
dx+k

lx
= k|qx.
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Example 2.10. Consider the life table
x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0

(i) Calculate dx, x = 81, 82, . . . , 86.
By using linear interpolation, calculate:
(ii) l80+t, 0 ≤ t ≤ 6,
(iii) tp80, 0 ≤ t ≤ 6.
(iv) the density function of the future life T80.

Satz 2.11.
Under a linear form for the number of living,

(1)
◦
ex:1 =

1 + px
2

,

(2)
◦
ex:n =

nLk

lx
=

1

lx

x+n−1∑
k=x

Lk =
x+n−1∑
k=x

lk + lk+1

2lx
.

(3)
◦
ex = ex +

1

2
,

Example 2.12. Consider the life table
x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0
Assume linear interpolation and calculate:

(i) the complete expected life at 80 using that ◦
ex = ex +

1
2
;

(ii) ◦
e80:3 ;

Recall that Sx = T (x)−K(x), whereK(x) is the curtate life duration.

Satz 2.13.
Under UDD,K(x) and Sx are independent random variables for each integer x,
and Sx has a distribution uniform on (0, 1).

A useful consequence of this theorem is the following result.
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Corollary 2.14.
Under the assumption of uniform distribution of deaths (UDD):
(i)

◦
ex = ex +

1

2
,

(ii)
Var(T (x)) = Var(K(x)) +

1

12
.

2.2.2 Exponential interpolation

Under exponential interpolation,

ln lx+t = (1− t) ln lx + t ln lx+1,

which is the formula for the linear interpolation of the function ln lt,
t ∈ [0, 1].

This expression is equivalent to

ln lx+t = ln lx + t ln lx+1

lx
,

and therefore

lx+t = lx(px)
t.

Satz 2.15.
Under an exponential form for the number of living, for each nonnegative integer
x and each t ∈ [0, 1]:

(1) tpx = (px)
t.

(2) µ(x+ t) = − ln px.
By the last point in Theorem 2.15, the force of mortality is a constant

in the interval (x, x + 1). Hence, the exponential interpolation is also
called the constant force of mortality interpolation.

Example 2.16. Consider the life table
x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0

Using the exponential interpolation, find 0.75p80 and 2.25p80.
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Satz 2.17.
Under the exponential interpolation for lx+t,

(1)
◦
ex:1 =

1

lx

dx
− ln px

.

(2)
◦
ex =

1

lx

∞∑
k=x

dk
− ln pk

.

(3)
◦
ex:n =

1

lx

x+n−1∑
k=x

dk
− ln pk

.

Example 2.18. Consider the life table
x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0
Using exponential interpolation, calculate ◦

e80 and ◦
e80:3 .
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section 2.3

Sele� and ultimate tables

A select table is a mortality table for a group of people subject to a
special circumstance (disability, retirement, etc.).

For the term insurance, an important circumstance is the age at which
an individual entered the group of policyholders, that is, at which the
insurance was purchases.

Indeed, passing the health checks at age x indicates that the individual
is in a good health and so has lower mortality rate than someone who has
passed health checks several years ago.

However, the initial selection effect is assumed to have worn off after
a period of m years which is called the select period. After this period the
mortality follows the general pattern and recorded in the ultimate table.

Here is another example of when the select table of mortality is ap-
propriate.

Example2.19. Considermenwho need to undergo a complicated surgery.
The probability that they will survive for a year following surgery is only
50%. If they do survive for a year, then they are fully cured and their
future mortality follows the pattern of general population.

Suppose that for the general population, we have l60 = 89, 777, l61 =

89, 015, and l70 = 77, 946.
Calculate probabilities that

(1) a man aged 60 who is just about to have surgery will be alive at
age 70,

(2) a man aged 60 who had surgery at age 59 will be alive at age 70,
and

(3) a man aged 60 who had surgery at age 58 will be alive at age 70.

Now let us look at the notation which is used for select and ultimate
tables. Suppose that we start with l[x] lives that entered the select period
at age x. Then the number of survivors at time t is denoted by l[x]+t.
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The probabilities of survival from age [x] + t to age [x] + t + n are
denoted

np[x]+t =
l[x]+t+n

l[x]+t

.

As usual, p[x]+t is a shorthand for 1p[x]+t.
The rows in the select and ultimate table show the age x at which

an individual joined the group. The columns correspond to the time t

elapsed from the moment an individual joined the group. Its header is
l[x]+t for the select table and lx+t for the ultimate table.

Example 2.20. You are given the following extract from a 2-year select-
and-ultimate mortality table:

[x] l[x] l[x]+1 lx+2 x+ 2

45 1235 1124 1039 47
46 1135 1025 978 48
47 1012 996 965 49

(i) Complete the table

[x] q[x] q[x]+1 qx+2 x+ 2

45 47
46 48
47 - 49

(ii) Find 2p[47], 2p[46]+1 and 2p47.
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Example 2.21. You are given the following extract from a 2-year select-
and-ultimate mortality table:

[x] q[x] q[x]+1 qx+2 x+ 2

45 0.009 0.008 0.007 47
46 0.008 0.006 0.005 48
47 0.004 0.003 - 49

Complete the table
[x] l[x] l[x]+1 lx+2 x+ 2

45 10,000 47
46 48
47 49

Example 2.22. You are given the following extract from a 3-year select
mortality table:

[x] l[x] l[x]+1 l[x]+2 lx+3 x+ 2

40 96489 96319 96084 95906 43
41 96312 96164 95998 95667 44
42 96157 95954 95265 95406 45
43 95895 95480 95243 95122 46
44 98743 96812 95012 94813 47
45 97239 95123 94753 94479 48

Compute ◦
e[44]:4 ,

◦
e[42]+2:4 and ◦

e44:4 .
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♡ SECTION 3

Life Insurance

section 3.1

Introdu�ion

In this section, we develop formulae for the valuation of traditional
insurance benefits. In particular, we consider whole life, term and en-
dowment insurance.

Because of the dependence on death or survival, the timing and pos-
sibly the amount of the benefit are uncertain. So, the present value of
the benefit can be modeled as a random variable.

We develop valuation functions for benefits based on the future life-
time Tx = T (x) and the curtate future lifetime Kx = K(x) − 1, which
we introduced in previous sections.

The valuation of benefits involve some interest theory functions. For
convenience, we review some of them here.

Given the effective annual rate of interest i, we use v = 1/(1 + i), so that
the present value of a payment of S which is to be paid in t years’ time
is Svt.

The force of interest per year is denoted δ where

δ = log(1 + i),

1 + i = eδ,
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and
v = e−δ.

The variable δ is also known as continuously compounded rate of interest.
The nominal rate of interest compounded p times per year is denoted

i(p),

i(p) = p
(
(1 + i)1/p − 1

)
.

The effective rate of discount per year is d, where

d = 1− v = 1− e−δ.
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section 3.2

Whole life insurance

Definition 3.1. A policy is called a whole life policy if it pays a fixed
amount, called the face value after the death of the policyholder.

The face value paid in a life insurance is also called the death benefit.
The payment in a whole life insurance can be paid at different times.

In this section, we consider the situation when the face value is paid at
the end of the year of death.

An insurer offering life insurance takes
a liability. It is of interest to know the
present value of this liability. We will
use the notationZx to denote the present
value of the death benefit payment of a
unit whole life insurance.

Example 3.2. On January 1, 2000, John
entered a whole insurance contract. This
contract pays a death benefit of $50, 000
at the end of year of death. On June
13, 2009, John died. The annual effec-
tive rate of interest is 6%. Calculate the
present value of the benefit payment at
the time of the issue of this contract.

Solution: The insurer makes a payment of 50, 000 at the end of the
year 2009 (on January 1, 2010). This date is in ten years after the issue of
the contract. The present value on January 1, 2000, of the paid benefit
payment is (50, 000)(1.06)−10 = 27, 919.73.

Definition 3.3. The actuarial present value (APV) of a whole life insur-
ance with a unit payment made at the end of the year of the death is the
expectation of the present value Zx and denoted by Ax,

Ax = EZx.
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Notice that vω−x ≤ Ax ≤ v.
Once we know how to deal with insurances paying a unit, we can deal

with insurances making a general payment. The actuarial present value
of a whole life insurance with payment b is bAx.

The quantity Ax is also called the net single premium of a whole life
insurance with a unit payment made at the end of the year of the death.

In this case,

Ax =
∞∑
k=1

vkP{Kx = k − 1} =
∞∑
k=1

e−δkP{Kx = k − 1}.

The m-th moment of the random variable Zx is denoted mAx.

mAx =
∞∑
k=1

vmkP{Kx = k − 1} =
∞∑
k=1

e−δmkP{Kx = k − 1}.

The variance can be calculated by using the usual formula

Var(Zx) = E[Z2
x]− (EZx)

2 = 2Ax − (Ax)
2.

Finally, note that

P{Kx = k − 1} = k−1|qx =
lx+k−1 − lx+k

lx
,

and so these probabilities can be easily obtained from life tables.

Example 3.4. Suppose i = 5% and Kx has probability mass function:

k 1 2 3
P{Kx = k − 1} 0.2 0.3 0.5

Find Ax and Var(Zx).

Suppose that an insurer offers a whole life insurance to n lives aged
x with a benefit payment of b paid at the end of the year of death. Let
Zx,1, . . . , Zx,n be the present values per unit of the benefit payments for
these n insurees. The aggregate present value of these benefit payments
is

Zag = b

n∑
j=1

Zx,j.
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Suppose that the insurer sets up a fund with an amount F to pay future
benefits. The insurer would like that with probability p close to one, the
fund is enough to pay future death benefits, p = P{Zag ≤ F}. By the
central limit theorem, Zag has approximately a normal distribution,

Zag ∼ N (nbAx, nb
2(2Ax − (Ax)

2).

Hence we can find the required fund size from the formula

F = nbAx + Φ(−1)(p)
√

nb2(2Ax − (Ax)2),

where Φ(−1)(p) is the inverse distribution function. Its values can be
found in the standard statistical tables.

For some values of p, Φ−1(p) are recorded in the following table:

Φ(x) 0.800 0.850 0.900 0.950 0.975 0.990 0.995
x 0.8416 1.0364 1.2815 1.6448 1.9599 2.3263 2.5758

Suppose now that the insurer collects a premium of P per insuree so
that the probability that the collected premiums suffices to cover for
the aggregate benefit payments is p, where p is close to one. In this case,
F = nP . Hence,

P = b

(
Ax + Φ(−1)(p)

√
2Ax − (Ax)2

n

)
.

Example 3.5. Consider the life table

x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0

An 80-year old buys a whole life policy insurance which will pay 50, 000
at the end of the year of his death. Suppose that i = 6.5%.

(1) Find the actuarial present value of this life insurance.
(2) Find the probability that the APV of this life insurance is ade-

quate to cover this insurance.
(3) Find the variance of the present value random variable of this life

insurance.
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(4) An insurance company offers this life insurance to 250 80-year old
individuals. How much should each policyholder pay so that the
insurer has a probability of 1% that the present value of these 250
policies exceed the total premiums received?

Solution:
(1) First we compute the relevant probabilities.

k 1 2 3 4 5 6
k−1|q80 0.132 0.224 0.216 0.18 0.136 0.112

Then we find the APV:

50, 000× A80 = 50, 000

(
0.132

1.065
+ . . .+

0.112

(1.065)6

)
= 40, 809.5

(2) We have a cash inflow of 40,809.5 and a cash outflow of 50,000.
If the fund grows at 6.5%, it will require 4 years to grow the fund above

50, 000. (We assume that payments of interest to the fund occur only at
the end of the year.)

Hence the probability in question is 3p80 = 107/250 = 42%
(3) First we calculate 2A80.
Note that (1.065)2 = 1.1342. Hence,

2A80 =

(
0.132

1.1342
+ . . .+

0.112

(1.1342)6

)
= 0.6724

and
Var(Z80) =

2A80 − (A80)
2 = 0.0062339.

(4) From the tables, Φ(−1)(0.99) = 2.33.

P = 40, 809.5 + 2.33× 50, 000×
√
0.0062339/250

= 40, 809.5 + 581.75 = 41, 391.25

□
Table 1 contains the values of Ax based on the life table for the USA

population in 2004.
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Table 1. Table of APVs

Example 3.6. An insurer issues a whole life insurance to a hundred
lives of age 40 which pays 20, 000 at the end of the year of her death.
Assume i = 0.06. The insurer has a fund with amount of 300, 000 of
dollars to pay for these hundred life insurances. Calculate the probability
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that this fund is not enough to cover the payments of these hundred life
insurances.

Since there are several different ways to calculate k−1qx, we have sev-
eral ways to calculate Ax. Here is one of them.

Ax = vqx + v2pxqx+1 + v3pxpx+1qx+2 + . . . .

Example 3.7. Suppose that mortality of (x) is given by the table

k 0 1 2 3 4
px+k 0.05 0.01 0.005 0.001 0

Calculate Ax if i = 7.5%.

Satz 3.8 |Recursion formula for Ax |.
For each x > 0,Ax = vqx + vpxAx+1.

Example 3.9.

Jess and Jane buy a whole life
policy insurance on the day of
their birthdays. Both policies will
pay $50, 000 at the end of the year
of death. Jess is 45 years old and
the net single premium of her in-
surance is $25, 000. Jane is 44

years old and the net single pre-
mium of her insurance is $23, 702.
Suppose that i = 0.06.

Find the probability that a 44-
year old will die within one year.

Next theorem deals with the
case when the curtate lifetime Kx follows a geometric distribution.
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Satz 3.10.
Suppose that for each k = 1, 2, . . .,
we have px+k = px. Then,

Ax =
qx

qx + i
,

mAx =
qx

qx + (1 + i)m − 1
,

Proof. SinceKx andKx+1 have the same distribution,Ax = Ax+1. Hence,

(1 + i)Ax = qx + pxAx+1 = qx + (1− qx)Ax.

and Ax = qx/(qx + i).
The second equality holds because we can calculate mAx as if we were

calculating Ax but with the interest rate set to (1 + i)m − 1. □

Corollary 3.11.
Under a constant force of mortality µ,

Ax =
qx

qx + i
,

where qx = 1− e−µ.

Example 3.12. Jane is 30 years old. She buys a whole life policy insur-
ance which will pay $20000 at the end of the year of her death. Suppose
that px = 0.9, for each x > 0, and i = 5%. Find the actuarial present
value of this life insurance.

Example 3.13. A benefit of $500 is paid at the end of the year of failure
of a home electronic product. Let K be the end of the year of failure.
Suppose that P{K = k} = (0.95)k

19
, k = 1, 2, . . .. The annual effective

interest rate is i = 6%. Calculate the actuarial present value of this
benefit.

Example 3.14. Mariah is 40 years old. She buys a whole life policy
insurance which will pay $150, 000 at the end of the year of her death.
Suppose that the force of mortality is 0.01 and the force of interest is
0.07. Find the mean and the standard deviation of the present value
random variable of this life insurance.
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Example 3.15. An actuarymodels the future lifetime of (30) as follows.
The actuary classifies lives according with health into three groups: good
health, average health, and poor health. The probabilities of belonging
to a given group are given by the following table:

Group Good Health Average Health Poor Health
Probability 0.1 0.3 0.6

Individuals for the same group have the same constant force of mor-
tality. The force of mortality for each group is given in the following
table:

Group Good Health Average Health Poor Health
Force of Mortality 0.01 0.05 0.1

The annual effective rate of interest is i = 7.5%.
Calculate Ax and Var(Zx).
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section 3.3

Term Life Insurance

Definition 3.16. An n-th term life insurance policy is an insurance policy
that pays a face value at the end of the year of death, if the insured dies
within n years of the issue of the policy.

The present value of an n-th term life insurance policy with unit pay-
ment is denoted Z1

x:n .
By definition,

Z1
x:n = vKx+1

1Kx<n =

{
vKx+1, if Kx < n,

0, if Kx ≥ n.

(The upper index 1 in Z1
x:n means that (x) must fail before the n-th

term.)

Definition 3.17. The actuarial present value of an n-th term life insur-
ance policy, A1

x:n , is the expectation of Z1
x:n ,

A1
x:n = EZ1

x:n =
n∑

k=1

vkP{Kx = k − 1}.

We use notation mA1
x:n to denote the

m-th moment of the actuarial present
value, mA1

x:n = E
(
Z1

x:n

)m
, that is,

mA1
x:n =

∑n
k=1 v

mkP{Kx = k − 1}.

Most of the formulae valid for the
whole life insurance are also valid for
term life insurance, except that summa-
tion are terminated at the n-th step. For
example, Var

(
Z1

x:n

)
= 2A1

x:n − (A1
x:n )

2,

or
A1

x:3
= vqx + v2pxqx+1 + v3pxpx+1qx+2.
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The recursion formula can also be
adapted in a straightforward manner. We simply condition on whether
the insuree survived the first year.

Satz 3.18 |Recursion |.

A1
x:n = vqx + vpxA

1
x+1:n−1 .

We can calculate the value of the term life insurance from the table
by the following formula:

A1
x:n = Ax − vn × npx × Ax+n.

This formula can be verified directly from definitions.
The factor vn × npx is often denoted as nEx, and for n = 5, 10, 20, it

is often in the tables.

Example 3.19. Suppose that i = 0.05, qx = 0.05 and qx+1 = 0.02. Find
A1

x:2
and Var(Z1

x:2
).

Example 3.20. Suppose that δ = 0.04 and (x) has force of mortality
µ = 0.03. Find A1

x:10
and Var(Z1

x:2
).

Example 3.21. Using i = 0.05 and a certain life table, A1
37:10

= 0.52.
Suppose that an actuary revises this life table and changes p37 from 0.95

to 0.96. Other values in the life table are unchanged.
Find A1

37:10
using the revised life table.

Example 3.22. Consider the life table

x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0

An 80-year old buys a three-year term life policy insurance which will
pay $50000 at the end of the year of his death. Suppose that i = 6.5%.

(i) Find the actuarial present value of this life insurance.
(ii) Find the standard deviation of the present value of this life insur-

ance.
(iii) Find the probability that theAPVof this life insurance is adequate

to cover this insurance.
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(iv) Find the probability that the present value of this life insurance
exceeds one standard deviation to its APV.
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section 3.4

Deferred Life Insurance

Definition 3.23. An n-year deferred life insurance is a life insurance policy
that pays a face value if the insured dies at least n-years after the issue of
the policy.

The present value of an n-year deferred life insurance with unit pay-
ment at the end of the year of death is denoted by n|Zx

n|Zx = vKx+1
1Kx≥n =

0, if Kx < n,

vKx+1, if Kx ≥ n.

The actuarial present value of an n-year deferred life insurance with
unit payment at the end of the year of death is denoted by n|Ax,

n|Ax = E[n|Zx] =
∞∑

k=n+1

vkP{Kx = k − 1}.

The m-th moment of n|Zx is denoted m
n|Ax.

m
n|Ax = E(n|Zx)

m =
∞∑

k=n+1

vmkP{Kx = k − 1}.
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From the tables, the deferred insurance can be calculated as follows.

n|Ax = vnnpxAx = nExAx.

This formula immediately implies the following result for the case of
constant force of mortality.

Satz 3.24 |Con
ant Force of Mortality |.
Under constant force of mortality µ,

n|Ax = e−n(µ+δ) qx
qx + i

.

We have also two recursion formulas.

Satz 3.25 |Recursion I |.
For each x > 0,

n|Ax = vpx × n−1|Ax+1.

Proof. Intuitively, there are two possibilities. Either the insuree dies in
the first year, and then the expected PV of payment is 0. Or he will
survive and the payoff structure is the same as for the deferred insurance
with age x+1 and deferral term n−1. The expected PV of this payment
is vpx × n−1|Ax+1. Formally,

n|Ax = E
(
vKx+1

1{Kx≥n}
)

= E
(
vKx+1

1{Kx≥n}|Kx = 0
)
P(Kx = 0)

+ E
(
vKx+1

1{Kx≥n}|Kx > 0
)
P(Kx > 0)

= 0 + vpxE
(
vKx+1+1

1{Kx+1≥n−1}
)

= vpx × n−1|Ax+1

□

Satz 3.26 |Recursion II |.
For each x > 0,

n|Ax = vn+1
n|qx + n+1|Ax.
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Proof.

n|Ax =
∞∑

k=n+1

vkP(Kx = k − 1)

= vn+1
n|qx +

∞∑
k=n+2

vkP(Kx = k − 1)

= vn+1
n|qx + n+1|Ax

□

Example 3.27. Consider the life table

x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0

An 80-year old buys a three-year deferred policy insurance which will
pay $50, 000 at the end of the year of his death. Suppose that i = 6.5%.

(i) Find the actuarial present value of this life insurance.
(ii) Find the probability that APV of this life insurance is adequate to

cover this insurance.

Example 3.28. An insurance company offers a 10-year deferred life in-
surance for individuals aged 25, which will pay $250, 000 at the end of
the year of his death.

Suppose that px = 0.95, for each x ≥ 0, and δ = 0.065.
(i) Find the expected value and the standard deviation of the present

value of this life insurance.
(ii) Fifty lives enter this insurance contract. Using the normal approx-

imation, calculate the amount F such that the probability that the ag-
gregate PV of these 50 lives is less than F equals 0.95.

Example 3.29. Suppose that i = 0.10, qx = 0.05 for all x.
Find 2|Ax and Var(2|Zx).

Solution.

2|Ax =
q

q + i
e−n(µ+δ) =

q

q + i

( p

1 + i

)2
= 0.249.



54 3. LIFE INSURANCE

Example 3.30. Suppose that 14|A35 = 0.24, i = 8%, p35 = 0.96.
Find 13|A36.

Solution.

13|A36 =
14|A35(1 + i)

p35
= 0.27.

Example 3.31. Suppose that 14|A35 = 0.24, i = 8%, 14p35 = 0.7, q49 =

0.03.
Find 15|A35.

Solution.

15|A35 = 14|A35 − (1 + i)−15
14p35 q49 = 0.233.
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section 3.5

Pure Endowment Life Insurance

Definition 3.32. An n-year pure endowment life insurance is a life insur-
ance policy that pays its face value in n years provided the insuree is alive
at that time.

We denote the present value of this insurance as Zx:
1
n ,

Zx:
1
n = vn1{Kx≥n} =

0, if Kx < n,

vn if Kx ≥ n.

The upper index 1 over the term subscript means that the term must
expire before the life does.

Similarly, the actuarial present value of an n-year pure endowment life
insurance with unit payment is denoted by Ax:

1
n . Unfortunately, this

notation leads to a possibility of confusion between the term and pure
endowment insurance policies. For this reason, the APV of the pure
endowment insurance is often denoted by nEx.
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Satz 3.33.
We have

nEx = vn · npx,
2
nEx = v2n · npx,

Var(Zn:
1
x ) = v2n · npx · nqx.

The value of nEx can also be interpreted as the n-year discount factor
that takes in account both interest and mortality. Namely, nEx is the
expected present value of a unit payment made to a still living insuree at
time n.

section 3.6

Endowment Life Insurance

Definition 3.34. An n-year endowment life insurance is a life insurance
policy that makes a payment when either death happens before n years,
or at the end of the n years if the insuree survived til that time.

Under an n-year endowment life insurance, every insuree receives a
payments. The deceased within n years receive a death benefit. The
n-year survivors receive a payment at time n.

The present value of an n-year endowment life insurance is denoted
by Zx:n , and the corresponding actuarial present value by Ax:n . (Note
the absence of the superscript.)

Zx:n = vmin(Kx+1,n) =

vKx+1, if Kx < n,

vn, if Kx ≥ n.

Ax:n = A1
x:n + nEx =

n∑
k=1

vk · k−1|qx + vn · npx.

Similarly, the m-th moment of the present value is

mAx:n =
n∑

k=1

vmk · k−1|qx + vmn · npx.

For the endowment insurance the following recursion formula holds.
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Satz 3.35.

Ax:n = vqx + vpxAx+1:n−1 .

Example 3.36. Consider the life table

x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0

An 80-year old buys a three-year endowment life policy insurancewhich
will pay $50000 at the end of the year of his death. Suppose that i =

6.5%.
(i) Find the actuarial present value of this life insurance.
(ii) Find the probability that APV of this life insurance is adequate to

cover this insurance.
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section 3.7

Deferred Term Life Insurance

Definition 3.37. Anm-year deferred n-year term life insurance is an in-
surance policy that makes a payment if death happens during the period
of n years that starts m years from now.

The present value of an m-year deferred n-year term life insurance
with unit payment paid at end of year of death is denoted by m|nZ

1
x, and

the corresponding APV by m|nA
1
x.
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section 3.8

Non-level payments paid at the end of

the year

In this section we consider the case when payments change over time.
Suppose that a life insurance provides a benefit of bk paid at the end of
the k-th year if death happens in this year. The present value of this
benefit is Bx = bKxv

Kx . The actuarial present value is

E[Bx] =
∞∑
k=1

bkv
kP{Kx = k}.

Example 3.38. A whole life insurance on (50) pays a death benefit at
the end of the year of death. The death benefit is $50, 000 for the first
year and it increases at annual rate of 3% per year. The annual effective
rate of interest is 6.5%. We have that A50 = 0.47 when the annual ef-
fective rate of interest is 1.065

1.03
− 1. Calculate the net single premium for

this insurance.

Definition 3.39. An increasing-by-onewhole life insurance pays k at time
k, for each k > 1, if the failure happens in the k-th year.

This insurance is also called an annually increasing whole life insurance.
The present value of an increasing by one unit whole life insurance is

denoted by (IZ)x,

(IZ)x = Kxv
Kx .

The actuarial present value of an increasing by one unit whole life in-
surance is denoted by (IA)x,

(IA)x = E[(IZ)x] =
∞∑
k=1

kvkP{Kx = k} =
∞∑
k=1

kvk · k−1|qx.

Satz 3.40.

(IA)x = Ax + 1Ex(IA)x+1.
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Proof. We calculate

(IA)x =
∞∑
k=1

kvkP{Kx = k}

=
∞∑
k=1

vkP{Kx = k}+
∞∑
k=2

(k − 1)vkP{Kx = k}

= Ax + vpx

∞∑
k−1=1

(k − 1)vk−1P{Kx+1 = k − 1}

= Ax + 1Ex(IA)x+1

□

Example 3.41. Suppose that A30 = 0.13, (IA)30 = 0.45, v = 0.94 and
p30 = 0.99. Find (IA)31.

Definition 3.42. An increasing by one n-year term life insurance pays an
annually increasing-by-one payment if insured dies within n years of the
issue of the policy.

The present value of an increasing by one n-year term life insurance
is denoted by (IZ)1x:n ,

(IZ)1x:n = Kxv
Kx1(Kxleqn).

The actuarial present value of a unit increasing n-year term life insur-
ance is denoted by (IA)1x:n ,

(IA)1x:n = E[(IZ)1x:n ] =
n∑

k=1

kvkP{Kx = k} =
n∑

k=1

kvk · k−1|qx.

Definition 3.43. An increasing by onen-year endowment insurance pays an
annually increasing-by-one payment when either death happens before
n-years, or at the end of the n years if death happens after n years.

The actuarial present value of this insurance is

IAx:n =
∑
k=1

nkvk · k−1|qx + nvn · npx

= (IA)1x:n + n · nEx.
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Definition 3.44. A decreasing-by-one n-year term life insurance pays n+

1− k at time k if the failure happens in the k-th interval, where 1 ≤ k ≤
n.

The actuarial present value of this insurance is

(DA)1x:n =
n∑

k=1

(n+ 1− k)vkP{Kx = k}.

section 3.9

Life insurance paid m times a year

It is not realistic that claims are paid only at the end of the year. A
more realistic model assumes that claims are paid at the end of each
month, or other period.

Suppose claim payments are made atm equally spaced times in a year.
To indicate this, a superscript (m) is added to the actuarial notation of
insurance variables.

For example, A(12)
x is the APV of the whole life insurance where pay-

ments are made at the end of the month of death, and A
(4)
x means that

claims are paid quarterly, that is, every three months.
Let J (m)

x = j if Tx ∈
(

j−1
m

j
m

]
for some positive integer j ≥ 1.

Then the present value of a whole life insurance paid m times a year
is

Z(m)
x = vJ

(m)
x /m,

and the actuarial present value is

A(m)
x = EZ(m)

x =
∞∑
j=1

vj/mP(J (m)
x = j)

=
∞∑
j=1

vj/m · j−1
m

| 1
m
qx.
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If the force of mortality is constant, then

A(m)
x =

1/mqx

1/mqx + (1 + i)1/m − 1

=
1− e−µ/m

eδ/m − e−µ/m
.

Example 3.45. Suppose that µTx(t) = 0.03 and δ = 0.06. Calculate
A

(3)
x and Var(Z(3)

x ).

Solution.
A(3)

x =
1− e−0.01

e0.02 − e−0.01
= 0.330,

2A(3)
x =

1− e−0.01

e0.04 − e−0.01
= 0.1960,

and
Var(Z(3)

x ) = 0.1871.

section 3.10

Level benefit insurance in the continuous

case

In this section, we consider the case of benefits paid at the moment of
of death. This is also called immediate payment of a claim.

The actuarial notation in the continuous case is similar to the discrete
case. A bar is added to each actuarial symbol to denote that payments
are made continuously.

For example, the present value of a unit payment whole life insurance
paid at the moment of death is denoted by Zx,

Zx = vTx = e−δTx .

The actuarial present value of this insurance is denoted by Ax,

Ax =

∫ ∞

0

vtfTx(t) dt

=

∫ ∞

0

vttpxµx+t dt
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An interpretation of vttpxµx+t dt is that it is the actuarial present value
of the unit payment made in the interval (t, t+ dt).

It is easy to calculate Ax in the case of the constant force of mortality.
Satz 3.46.
In the model with constant force of mortality µ,

Ax =
µ

µ+ δ
.



64 3. LIFE INSURANCE

section 3.11

Calculating APV from life tibles

If the mortality is given by life tables
and the claim payments happens more
frequently than once a year, then we need
to approximate mortality at non-integer
times.

In this case the easiest situation is
whenwe assume the uniform distribution
of deaths over each year.

The following result is very handy
when we need to evaluate the value of the
insurance policy that pays at the moment
of death.
Satz 3.47.
Assume a uniform distribution of deaths over
each year of death. Suppose that the benefit bt
is constant in each interval (k − 1, k], k =

1, 2, . . .. Then,

E[bTxv
Tx ] =

i

δ
E[bKxv

Kx

].

Proof. Recall the decomposition Tx = Kx− 1+Sx. We use the fact that
Kx and Sx are independent and that Sx has a uniform distribution on
the interval [0, 1]. Then,

E[bTxv
Tx ] = E[bKxv

Kx−1+Sx ]

= E[bKxv
Kx ]E[vSx−1],

and we can calculate

E[vSx−1] =

∫ 1

0

(1 + i)1−tdt =
i

ln(1 + i)
=

i

δ
.

□
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Hence the APV of the insurance with immediate payment equals the
APV of the insurance that pays at the end of the year multiplied by the
factor of i/δ.

Note that 1 + i = eδ > 1 + δ. Hence the factor i/δ > 1, and the
value of the insurance with immediate payment is always greater than
the value of insurance that pays at the year end.

A similar result holds for the insurance that pays m times a year.

Satz 3.48.
Assume a uniform distribution of deaths over each year of death. Suppose that the
benefit bt is constant in each interval (k − 1, k], k = 1, 2, . . .. Then,

E[bJm
x /mv

Jm
x /m] =

i

i(m)
E[bKxv

Kx

],

where
i(m) = m

(
(1 + i)1/m − 1

)
.

So for example,

A
1

x:n =
i

δ
A1

x:n

and
A1

x:n
(m) =

i

i(m)
A1

x:n

For endowment insurance, these formulas a slightly different

Ax:n =
i

δ
A1

x:n + nEx

and
Ax:n

(m) =
i

i(m)
A1

x:n + nEx.

This is because the pure endowment portion of the endowment in-
surance is always paid at the end of the year n.

Example 3.49. Consider the life table

x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0

Suppose that i = 6.5%. Assume a uniform distribution of deaths.
Calculate: (i) A80, (ii) A1

80:3
, (iii) A80:3 ,



66 3. LIFE INSURANCE

(iv) A80, (v) A
1

80:3 , (vi) A80:3 ,
(vii) A(12)

80 (viii) A1
80:3

(12) (ix) A(12)

80:3
.
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section 3.12

Insurance for joint life and la
 survivor

Suppose that the future lifetimes of lives (x) and (y) are denoted by
Tx and Ty. We will assume here that these random variables are inde-
pendent but may have different survival functions.

Then we define time to first death, Txy = min(Tx, Ty), and time to last
death, Txy = max(Tx, Ty).

The subscript in these expressions is called a status; the subscript xy
is the joint life status, and xy is the last survivor status. So, the random
variables Txy and Txy represent the time until the failure of joint life
status and the last survivor status, respectively.

In cases where numbers are used instead of symbols x and y, it is usual
to put colon between these numbers. For example, we write T34:41 in-
stead of T34 41.

It is very useful to note that the realized value of Tx matches one of
Txy and Txy, and the realized value of Ty matches the other.
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In particular, this implies that

Tx + Ty = Txy + Txy, and

vTx + vTy = vTxy + vTxy .

We can extend our notation in a standard way, which is illustrated by
the following examples.

u|tqxy = P[(x) and (y) are both alive in u years but not in u+ t years]

= P[u < Txy ≤ u+ t].

u|tqxy = P[at least one (x) and (y) is alive in u years but both are

deceased after u+ t years]

= P[u < Txy ≤ u+ t].

In addition, some notation is specific to policies on multiple lives. For
example,

tq
1
xy = P[(x) dies before (y) and within t years]

= P[Tx ≤ t and Tx < Ty].

tq
2
xy = P[(x) dies after (y) and within t years]

= P[Ty < Tx ≤ t].

By using the independence assumption, we can derive formulas for the
probabilities related to the joint life status and the last survival status.

tpxy = P[Tx > t and Ty > t] = tpx · tpy,
and

tpxy = P[Tx > t or Ty > t] = 1− tqx · tqy.
The notation here is a bit ambiguous and might lead to confusion if the
survival functions of these two lives are different. So, in some cases we
might need to write the formulas more carefully. For example,

tp
m f
45:40 = tp

m
45 · tp

f
40.
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Using the joint life and last survivor probabilities, we can develop for-
mulas for the actuarial present value of an insurance in the usual manner.

For example, Axy denotes the APV of the whole life insurance on the
joint life. It pays one unit at the end of the year of the first death. We
can calculate its value as follows.

Axy = E[vTxy ]

=
∞∑
k=1

vk · k−1|qxy,

where

k−1|qxy = k−1pxy − kpxy

= k−1px · k−1py − kpx · kpy.

We can calculate Axy in a similar fashion,

Axy = E[vTxy ]

=
∞∑
k=1

vk · k−1|qxy,

where

k−1|qxy = kqxy − k−1qxy

= kqx · kqy − k−1qx · k−1qy.

It is also worth noting, that

Axy + Axy = Ax + Ay,

because two individual insurances on (x) and (y) have the same total pay-
off as the insurances on joint life and on last survivor life, bought to-
gether.

Example 3.50. Consider the following life tables appropriate for a hus-
band and wife.
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x lx y ly

65 43,302 60 47,260
66 42,854 61 47,040
67 42,081 62 46,755
68 41,351 63 46,500
69 40,050 64 46,227

(1) Calculate 3pxy and 3pxy for a husband aged x = 65 and a wife aged
y = 60.

(2) Calculate A1
xy:2

and A1
xy:2

if interest rate is 5% per year.

Solution. (1)

3pxy = 3px3qy =
41, 351

43, 302
× 46, 500

47, 260
= 0.9396

3pxy = 1− 3qx3qy = 3px + 3py − 3px3py

=
41, 351

43, 302
+

46, 500

47, 260
− 41, 351

43, 302
× 46, 500

47, 260
= 0.9993

(2) We calculate

A1
xy:2 =

2∑
k=1

(1 + i)−k
k−1|qxy

= 1.05−1 ×
(
1− 42, 854

43, 302
× 47, 040

47, 260

)
+ 1.05−2 ×

(
42, 854

43, 302
× 47, 040

47, 260
− 42, 081

43, 302
× 46, 755

47, 260

)
= 1.05−1 × 0.0150 + 1.05−2 × 0.0236 = 0.0357
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A1
xy:2 =

2∑
k=1

(1 + i)−k
k−1|qxy

= 1.05−1 ×
(
43, 302− 42, 854

43, 302
× 47, 260− 47, 040

47, 260

)
+ 1.05−2 ×

(
43, 302− 42, 081

43, 302
× 47, 260− 46, 755

47, 260

− 43, 302− 42, 854

43, 302
× 47, 260− 47, 040

47, 260

)
= 1.05−1 × 0.00004816 + 1.05−2 × 0.000253 = 0.0003
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♡ SECTION 4

Annuities

section 4.1

Introdu�ion

A life annuity is a financial contract according to which a seller (issuer)
makes periodic payments in the future to the buyer (annuitant). Life
annuities are one of the most often used plans to fund retirement. The
payment for a life annuity can be made at the time of issue. But, in the
case of retirement, contributions are made to the retirement fund while
the annuitant works. Common retirement plans are 401(k) plans and
(individual retirement accounts) IRAâs. At the time of retirement, the
insurance company uses the accumulated deposit to issue a life annuity.
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Contributions to this retirement fund can be made by either the em-
ployer and/or the employee. Contributions made by the employee can
be tax free.

Another way to get retirement funds is done by the Social Security.
So, Social Security is some how similar to an insurance company issuing
life annuities being funded while an individual works.
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section 4.2

Whole life annuities

A whole life annuity is a series of payments made while an individual is
alive.

4.2.1 Whole life due annuity

Definition 4.1. Awhole life due annuity is a series payments made at the
beginning of the year while an individual is alive.

The present value of a whole life due annuity for (x)with unit payment
is denoted by Ÿx. It is the present value of the cashflow of unit payments
made at times 0, 1, . . . , Kx − 1,

Ÿx =
Kx−1∑
k=0

vk.

The standard notation for the present value of a due annuity that
makes n payments at the beginning of the first n years is än . So, Ÿx =

äKx
.

The actuarial present value of this annuity is denoted by äx.

äx = EŸx =
∞∑
k=1

äk · k−1|qx

Satz 4.2 |Relation between annuity and insurance |.

(i) If i > 0,

Ÿx =
1− vKx

d
=

1− Zx

d

äx =
1− Ax

d

Var(Ÿx) =
Var(Zx)

d2
=

2Ax − A2
x

d2
,

where d = 1− v = i/(1 + i).
(ii) If i = 0, Ÿx = Kx, äx = ex + 1, andVar(Ÿx) = Var(Kx).



VLADISLAV KARGIN 75

Proof.

äKx
= 1 + v + v2 + . . .+ vKx−1 =

1− vKx

1− v
=

1− Zx

d
.

All other equalities in (i) directly follow. Equalities in (ii) follow from
definitions. □

The APV of the life annuity due can also be found by adding the
present value of yearly payments.

Satz 4.3.

Ÿx =
∞∑
k=0

Zx:
1
k

and

äx =
∞∑
k=0

kEx =
∞∑
k=0

vk · kpx.

Proof. The payment at time k is made if and only if k < Tx. Hence,

Ÿx =
∞∑
k=0

vk1(k<Tx) =
∞∑
k=0

Zx:
1
k
.

The second identity is obtained by taking the expectation on both sides
of the first identity. □

Satz 4.4 |Recursion formula for äx |.

äx = 1 + vpxäx+1.

Satz 4.5 |Con
ant force of mortality |.
For the constant force of mortality model,

äx =
1 + i

qx + i
=

1

1− e−(δ+µ)
=

1

1− vpx
,

where qx = 1− e−µ.

Proof. Recall that under the constant mortality assumption,

Ax =
qx

i+ qx
.
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Hence,

äx =
1− Ax

d
=

1 + i

i

i

i+ qx
=

1 + i

i+ qx

=
eδ

eδ + e−µ
=

1

1− e−(δ+µ)
.

□

Example 4.6. Suppose that px+k = 0.97, for each integer k ≥ 0 and
i = 6.5%. Find äx and Var(Ÿx).

Example 4.7. Assume i = 6% and the DeMoivre model with terminal
age 100. Find ä30.

Solution. In general, for the De Moivre model, we have

k−1|qx =
1

ω − x
,

therefore,

Ax =
ω−x∑
k=1

vk
1

ω − x
=

1

ω − x
v
1− vω−x

1− v
=

1

ω − x

1− vω−x

i
,

which is, incidentally, equals the value of annuity-immediate aω−x di-
vided by ω − x. In our case,

A30 =
a70

70
= 0.2341.

Hence
ä30 =

1− A30

d
= 13.5315.

Example4.8. John, age 65, has $750, 000 in his retirement account. An
insurance company offers a whole life due annuity to John which pays $P
at the beginning of the year while (65) is alive, for $750, 000. The annuity
is priced assuming that i = 6% and the life table for the USA population
in 2004 (see pages 628 - 631). The insurance company charges John 30%
more of the APV of the annuity. Calculate P .

Solution. From the life table, we get that ä65 = 11.022302. TheAPVof
this annuity isP ä65 = (11.022)P . Wehave that 750, 000 = (1.3)(11.022302)P

and P = 52341.43257.



VLADISLAV KARGIN 77

Example 4.9. Consider the life table

x 80 81 82 83 84 85 86
lx 250 217 161 107 62 28 0

An 80-year old buys a due life annuity which will pay $50, 000 at the
beginning of the year. Suppose that i = 6.5%. Calculate the single ben-
efit premium for this annuity.

Answer: ä80 = 3.0116, and (50, 000)ä80 = 150, 582.71.

Example 4.10. Suppose that äx = äx+1 = 10 and qx = 0.01. Find i.

Answer: i = 10%.

Example 4.11. An insurance company issues 800 identical due annu-
ities to independent lives aged 65. Each of of this annuities provides an
annual payment of 30, 000. Suppose that px+k = 0.95 for each integer
k > 0, and i = 7.5%.
(i) Find äx and Var(Ÿx).
(ii) Using the central limit theorem, estimate the initial fund needed at
time zero in order that the probability that the present value of the ran-
dom loss for this block of policies exceeds this fund is 1%.

Solution. (i) We have that

äx =
1 + i

qx + i
= 8.6,

Ax =
qx

qx + i
= 0.4,

2Ax =
qx

qx + i(2 + i)
= 0.2445,

Var(Ÿx) =
2Ax − A2

x

d2
= 17.3598.

LetQ be the fund needed. ThenQ is 30, 000× the 99-th percentile of
a normal r. v. with mean 800× 8.6 and variance 800× 17.3598. Hence,

Q = 30, 000×
[
800× 8.6 + (2.326)

√
800× 17.3598

]
= 214, 623, 343.70.
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4.2.2 Whole life immediate and other annuities

Here are the definitions of other types of annuities. For insurances in
the table below, the payments are made only while the insured individual
is alive.

Name of the annuity Definition Symbols
for PV and
APV

Whole life discrete due Pays at the beginning of the year. Ÿx, äx

Whole life discrete imme-
diate

Pays at the end of the year. Yx, ax

Whole life continuous A continuous flow of payments
with constant rate.

Y x, ax

Due n-year deferred Pays at the beginning of the year
starting in n years.

n|Ÿx, n|äx

Immediate n-year
deferred

Pays at the end of the year starting
in n years.

n|Yx, n|ax

An n-year deferred con-
tinuous

A continuous flow of payments
starting in n years

n|Y x, n|ax

Due n-year temporary Pays at the beginning of the year
for at most n years

Ÿx:n , äx:n

Immediaten-year tempo-
rary

Pays at the end of the year for at
most n years

Yx:n , ax:n

An n-year temporary
continuous

A continuous flow of payments
for at most n years

Y x:n , ax:n
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Annuity Formula 1 Formula 2

äx
1−Ax

d

∑∞
k=0 kEx =

∑∞
k=0 v

k · kpx

ax äx − 1 = v−Ax

d

∑∞
k=1 kEx =

∑∞
k=1 v

k · kpx

ax
1−Ax

δ

∫∞
0

vt · tpx dt

äx:n
1−Ax:n

d

∑n−1
k=0 kEx =

∑n−1
k=0 v

k · kpx

ax:n äx:n+1 − 1
∑n

k=1 kEx =
∑n

k=1 v
k · kpx

ax:n
1−Ax:n

δ

∫ n

0
vt · tpx dt

n|äx nEx
1−Ax+n

d
= nEx−n|Ax

d

∑∞
k=n kEx =

∑∞
k=n v

k · kpx

n|ax n|äx − nEx = n+1|äx
∑∞

k=n+1 kEx =
∑∞

k=n+1 v
k · kpx

n|ax nEx
1−Ax+n

δ
= nEx−n|Ax

δ

∫∞
n

vt · tpx dt

For example,

äx:n = E
(
1 + v + . . .+ vmin(Kx,n)−1

)
= E

1− vmin(Kx,n)

1− v
=

1− Ax:n

d
.

Satz 4.12.

äx:n = 1 + vpxäx+1:n−1 .

Definition 4.13. The actuarial accumulated value at time n of n-year
temporary due annuity is defined by

s̈x:n =
äx:n

nEx

.

We have that äx:n = nExs̈x:n . To take care that the number of living
decreases over time, in actuarial computations, the n-year discount fac-
tor is nEx = vn npx. So the actuarial accumulated value can be thought
of as the actuarial future value of an n-year due life annuity to (x).

In other words, an insurer offers an n-year due life annuity to lives
aged (x). The insurer can fund this annuity by either:
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1. charging äx:n at time zero to each of the living.
2. charging s̈x:n at time n to each of the living at that time.

One other type of annuity is certain due life annuity.

Definition 4.14. An n-year certain due life annuity pays at the beginning
of the year while either the individual is alive or the number of payments
does not exceed n.

So if the individual dies before n-th year, then the annuity will still pay
until n payments are made. If the individual dies after n-th year then the
annuity pays while he or she is alive.

The PV and APV of this insurance are denoted Ÿx:n and äx:n , respec-
tively.
Satz 4.15.

äx:n = än + n|äx = än +
∞∑
k=n

vk · kpx

Example 4.16. An insurer offers a 20-year temporary life annuity due
to lives age (60) with an annual payment of $40, 000. Mortality follows
the life table for the US population in 2004 (see pages 628-631). The
annual effective rate of interest is 6%. Calculate the APV of this life
annuity.

Example 4.17. Suppose that ax = 10, qx = 0.02 and δ = 0.07. Deaths
are uniformly distributed within each year of age. Find ax+1.

Example 4.18. You are given:
(i) v = 0.94.
(ii) px = 0.99.
(iii) px+1 = 0.95.
(iv) äx = 5.6.

Calculate ä
x:3

.

4.2.3 Annuities paidm times a year

A whole life due annuity with payments paidm times a year is a series
payments made at the beginningm-thly time interval while an individual
is alive.
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If a whole life due annuity for (x) pays the amount $ 1
m

and does it m
times a year, then its present value is denoted by Ÿ (m)

x and the expecta-
tion of the present value (APV) is denoted by ä(m)

x .

Satz 4.19.
If v ̸= 1, then

Ÿ (m)
x =

1− Z
(m)
x

d(m)
,

ä(m)
x =

1− A
(m)
x

d(m)
,

Var
(
Ÿ (m)
x

)
=

2A
(m)
x −

(
A

(m)
x )2(

d(m)
)2 .

where
d(m) = m

(
(1 + i)1/m − 1

)
.

Example 4.20. Suppose that µ(t) = 0.03, and δ = 0.06. Calculate ä(12)x

and Var(Ÿ (12)
x ).

section 4.3

Annuities - Woolhouse approximation

We studied previously that for evaluation of annuities paid monthly,
a very convenient method is available if we assume the uniform of dis-
tribution of deaths (UDD). In this case, we have formula

A(m)
x =

i

i(m)
Ax,

where

i(m) = m
(
(1 + i)

1
m − 1

)
.

Then, for the life annuity we get

ä(m)
x =

1− A
(m)
x

d(m)
,

where

d(m) = m
(
1− (1 + i)−

1
m

)
.
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Another method to approximate the value of these annuities is called
the Woolhouse method. Recently, it has become quite popular in MLC ex-
ams, although it gives almost the same values as the UDD method. The
method is based on the Euler-Maclaurin formula for numerical integra-
tion, which is an improvement of the trapezoidal rule.

∫ ∞

0

g(t) dt = h
( ∞∑

k=0

g(kh)− 1

2
g(0)

)
+

h2

12
g′(0)− h4

720
g′′(0) + ...

for a positive constant h.
This formula is applied to the function g(t) = vttpx. By taking the

derivative we find,

g′(t) = (log v)vttpx + vt(log tpx)
′
tpx,

g′(0) = log v − µx = −δ − µx.

Now, by taking either h = 1 or h = 1/m, we obtain two formulas for
ax, one in terms of äx and another in terms of ä(m)

x . This allows us to
express ä(m)

x in terms of äx.
We skip the details of the calculation and present the result:

ä(m)
x ≈ äx −

m− 1

2m
− m2 − 1

12m2
(δ + µx).

This is the Woolhouse formula for the whole life annuity paid m times
a year.

For the temporary life annuities we can use the formula

ä
(m)
x:n = ä(m)

x − nExä
(m)
x+n.

By using this formula and keeping only two terms in the Woolhouse ap-
proximation, we get:

ä
(m)
x:n = äx:n − m− 1

2m
(1− nEx).

This is the Woolhouse formula with two terms.
If we keep all three terms, we obtain the Woolhouse formula with three

terms,
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ä
(m)
x:n =äx:n − m− 1

2m
(1− nEx)

− m2 − 1

12m2

[
δ + µx − nEx(δ + µx+n)

]
.

In order to apply this formula, we need an estimate for mortality force
function. Here is one possibility,

µx ≈ −1

2
(log px−1 + log px).

Example 4.21. You are given:
(1) A35 = 0.188

(2) A65 = 0.498

(3) 30p35 = 0.883

(4) i = 0.04

Calculate 1000ä(2)
35:30

using the two-term Woolhouse approximation.

Solution. We have

ä
(2)

35:30
= ä

(2)
35 − 30E35ä

(2)
65 .

Since m = 2, therefore,

ä
(2)
35 = ä35 −

1

4
=

1− A35

d
− 1

4

=
1− 0.188

1− 1.04−1
− 1

4
= 20.8620

Similarly,

ä
(2)
65 =

1− A65

d
− 1

4

=
1− 0.498

1− 1.04−1
− 1

4
= 12.8020

Next,

30E35 = v3030p35 = 1.04−30 × 0.883 = 0.2722

Hence,

1000ä
(2)

35:30
= 1000× (20.8620− 0.2722× 12.8020) = 17, 377
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section 4.4

Annuities and UDD assumption

Recall that the value of an annuity which is paidm-times a year can be
approximated by the value of the corresponding annuity which is paid
annually plus a correction term.

One method is the Woolhouse approximation given by the formula

ä(m)
x ≈ äx −

m− 1

2m
− m2 − 1

12m2
(δ + µx).

Often, the third term is omitted.
Anothermethod of approximation based on the assumption that deaths

are distributed uniformly during each of the years when the contract is
in force. This is known as the uniform distribution of deaths (UDD) as-
sumption.

Satz 4.22.
Under the UDD assumption,

ä(m)
x = α(m)äx − β(m),

where

α(m) =
i

i(m)
× d

d(m)
and β(m) =

i− i(m)

d(m)
.

Proof. We know that the EPVs of the corresponding whole life insur-
ances are related by the following exact formula:

A(m)
x =

i

i(m)
Ax.

At the same time, we have these relations:

Ax = 1− däx and A(m)
x = 1− d(m)ä(m)

x .

It follows that

i(m)
(
1− d(m)ä(m)

x

)
= i
(
1− däx

)
,
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which gives

ä(m)
x = −i− i(m)

d(m)
+
( i

i(m)
× d

d(m)

)
äx.

□

The formulas and selected values for α(m) and β(m) can be found in
the Illustrative Table.

Note that it can be shown that α(m) = 1 + O(1/m2) and β(m) =

(m− 1)/(2m) so that this approximation is close to the approximation
by the Woolhouse formula with two terms.

By taking the limit m → ∞, we get a similar formula for continuous
annuities:

a(m)
x =

( i
δ
× d

δ

)
ax −

i− δ

δ2
.

Corollary 4.23.
For the temporary annuities, we have

ä
(m)
x:n = α(m)äx:n − β(m)

(
1− vn × npx

)
Proof. This result immediately follows from the equation:

ä
(m)
x:n = ä(m)

x − vn × npx × ä
(m)
x+n.

□
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♡ SECTION 5

Benefit Premiums

section 5.1

Funding a liability

When an insurance takes an insuree it assumes a liability. The in-
surance company will make one or several payments in the future. The
present value of this liability is contingent on the death of the insuree.
In this section, we study the benefit premiums needed to fund insurance
liabilities.

Previously, we considered the value of an insurance product at issue
time. The net single premium of an insurance product is the (actuarial
present value) APV of the benefit payments for this insurance product.

However, usually insurance products are funded periodically while the
contract is in hold. These payments aremadewhile the individual is alive
and the obligations of the contract are not expired. Payments made
to fund an insurance contract are called benefit premiums, and they are
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usually made annually. The annual premium (also called the net annual
premium and the benefit annual premium) is the amount which an insurance
company allocates to fund an insurance product.

An insurance product is funded according with the equivalence principle
if the actuarial present values of the funding scheme and of the contin-
gent benefits agree.

The annual premium found under the equivalence principle is the ba-
sis to the payment charged to the insuree. Costs and commissions are
added to this basis. The final value of each payment in an insurance
contract is called a contract premium.

The loss of an insurance product is a random variable equal to the ex-
cess of the present value of benefit payments over the present value of
funding.

section 5.2

Fully discrete benefit premiums: Pric-

ing by equivalence principle

In this section, we will consider
the funding of insurance products
paid at the end of the year of
death with annual benefits premi-
ums made at the beginning of the
year. The funding is made as far as
the individual is alive and the term
of the insurance has not expired.

This type of the insurance con-
tract is called a fully discrete life in-
surance.

Let us denote the loss for a unit
fully discrete whole life insurance
by Lx.
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Satz 5.1.
For a fully discrete whole insurance,
(i) The loss random variable is

Lx = Zx − PŸx = Zx

(
1 +

P

d

)
− P

d
.

(ii) The actuarial present value of the loss Lx is

ELx = Ax − P äx = Ax

(
1 +

P

d

)
− P

d
.

(iii) The variance of the loss Lx is

Var(Lx) =
(
1 +

P

d

)2
Var(Zx) =

(
1 +

P

d

)2(
2Ax − (Ax)

2
)

The benefit premium of a fully discrete whole insurance funded under
the equivalence principle is denoted by Px.

If a whole insurance is funded under the equivalence principle, then
ELx = 0, that is, Px is the annual benefit premium at which the insurer
expects to break even.

Satz 5.2.
If a fully discrete whole insurance is funded using the equivalence principle, then

Px =
Ax

äx
=

dAx

1− Ax

=
1

äx
− d

and
Var(Lx) =

2Ax − (Ax)
2

(1− Ax)2
=

2Ax − (Ax)
2

(däx)2
.

Satz 5.3.
Under constant force of mortality µ for life insurance funded through the equiv-
alence principle, Px = vqx.

Example 5.4. Michael is 50 years old and purchases a whole life insur-
ance policy with face value of 100, 000 payable at the end of the year of
death. This policy will be paid by level benefit annual premiums at the
beginning of each year while Michael is alive. Assume that i = 6% and
death is modeled using De Moivre’s model with terminal age 100.
(i) Find the net single premium for this policy.
(ii) Find the benefit annual premium for this policy.
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(iii) Find the variance of the present value of the loss for this insurance
contract.

Solution. (i) Under the De Moivre law, the probability to die in year k
is 1

ω−x
for 1 ≤ k ≤ ω − x. Hence,

Ax =
1

ω − x

(
v + v2 + . . .+ vω−x

)
=

1

ω − x

v

1− v

(
1− vω−x

)
=

1

ω − x

1

i

(
1− vω−x

)
=

aω−xi

ω − x

=
1

50

1

0.06

(
1− 1.06−50

)
= 0.315237212728

and the net single premium is $31 523.72.
(ii) We have that

P50 =
dA50

1− A50

=
(0.06/1.06)(0.315237212728)

1− 0.315237212728
= 0.02605809799

and the benefit annual premium is $2 605.81.
(iii) We have that

2A50 =
1

ω − x

1

i(2 + i)

(
1− v2(ω−x)

)
= 0.1613354003,

Then,

Var(L50) = 1010
2A50 − (A50)

2

(1− A50)2
= 1010

0.1613354003− (0.315237212)2

(1− 0.315237212)2

= 1.32140947× 109

Example 5.5. Maria is 30 years old and purchases a whole life insurance
policy with face value of $70, 000 payable at the end of the year of death.
This policy will be paid by a level benefit annual premium at the begin-
ning of each year while Maria is alive. Assume that i = 6% and death is
modeled using the constant force of mortality µ = 0.02.

(i) Find the net single premium for this policy.
(ii) Find the benefit annual premium for this policy.
(iii) Find the variance of the present value of the loss for this insurance
contract.
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Solution. (i)

A30 =
qx

qx + i
=

1− e−0.02

1− e−0.02 + 0.06
= 0.2481328,

and the net single premium is $17 369.30.
(ii)

P50 = vqx = (1.06)−1(1− e−0.02) = 0.0186805,

and the benefit annual premium is $1 307.63.
(iii)

2A30 =
1− e−0.02

1.062 − e−0.02
= 0.138083288,

and

Var(L30) = (70 000)2
2A50 − (A50)

2

(1− A50)2
= (70 000)2

0.138083288− (0.2481328007)2

(1− 0.2481328007)2

= 663 210 373

Example 5.6. For a whole life insurance of 100, 000 on (x), you are
given:

(i) Death benefits are payable at the moment of death.
(ii) Deaths are uniformly distributed over each year of age.
(iii) Premiums are payable monthly.
(iv) i = 0.06

(v) äx = 9.19

Calculate the monthly net premium.

Solution. Let P denote the monthly net premium.
First, we calculate the EPV of premiums:

EPV(premiums) = 12P ä12x = 12P
[
α(12)äx − β(12)

]
= 12P

[
1.00028× 9.19− 0.46812]

= 104.6934P
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Next, we calculate the EPV of benefits:

EPV(benefits) = 100, 000Ax = 100, 000
i

δ
Ax

= 100, 000
i

δ
(1− däx)

= 100, 000
0.06

log 1.06

(
1− 0.06

1.06
× 9.19

)
= 49, 406.59

Finally,

P =
49, 406.59

104.6934
= 471.92

section 5.3

Compensation for risk

If an insurer uses the equivalence principle, then it can expect to break
even. However, an insurer should be compensated for facing losses. For
this reason, the annual benefit premium in an insurance contract is usu-
ally bigger than the annual benefit premium obtained using the equiva-
lence principle.

The risk charge (or security load-
ing) is the excess of the benefit
annual premium over the benefit
annual premium found using the
equivalence principle.

The percentile annual premium
can be found using either only one
policy or an aggregate of policies.

Suppose that an insurer offers a
whole life insurance paying $1 at
the end of the year of death to n

lives aged x. The insurances are
funded by a level annual benefit
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premiumP collected at the begin-
ning of each year.

Then the expected aggregate loss is

ELAgg = n(Ax − P äx),

and the variance of the aggregate loss is

Var(LAgg) = n
(
1 +

P

d

)2
Var(Zx).

Suppose that we aim to choseP so that the aggregate loss is non-positive
(that is, aggregate profit is non-negative) with probability α, where α is
large.

By the Central Limit Theorem, the aggregate loss is distributed ap-
proximately as a Gaussian random variable, and therefore, the ratio of
expected profit to the standard deviation of the loss should equal zα, the
α-quantile of the standard normal distribution,

n(P äx − Ax)(
1 + P

d

)√
nVar(Zx)

= zα,

or
√
n(P äx − Ax) = zα

(
1 +

P

d

)√
2Ax − A2

x.

This linear equation can be solved for the aggregate percentile annual
premium P .

Example 5.7. An insurer offers a fully discrete whole life insurances of
$10 000 on independent lives age 30. You are given:
(i) i = 0.06.
(ii) Mortality follows the life table in page 628.
(iii) The annual contract premium for each policy is 1.25Px.

Using the normal approximation, calculate the minimum number of
policies the insurer must issue so that the probability that the aggregate
loss for the issued policies is less than 0.05.

Solution. From the table we find:

1000A30 = 82.29543, and 1000 · 2A30 = 17.96859,
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which implies

Var(Z30) = 0.01119605, and
√
Var(Z30) = 0.1058114.

Also from the table:

ä30 = 16.212781

and therefore

P30 = 10 000
A30

ä30
=

822.9543

16.212781
= 50.75960

and the annual contract premium is

P = 1.25P30 = 63.4495

Hence we should have
√
n
(P
B
äx − Ax

)
= zα

(
1 +

P

Bd

)√
2Ax − A2

x,

which we solve for
√
n,

√
n = zα

(
1 + P

Bd

)√
2Ax − A2

x

P
B
äx − Ax

= zα

(
B + P

d

)√
2Ax − A2

x

P äx −BAx

From the normal distribution table, z0.95 = 1.64, and

√
n = 1.64

(10 000 + 63.4495
0.06/1.06

) · 0.1058114
63.4495 · 16.212781− 822.9543

= 9.379986.

Therefore, n = ⌈9.3799862⌉ = 88.

Now, suppose that the funding scheme is limited to the first t years.
From the equivalence principle we have

EZx = PEŸx:t .

The benefit premium found in this way is denoted by tPx.

tPx =
Ax

äx:t
.
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Example5.8. Ethan is 30 years old and purchases a whole life insurance
policy with face value of $50 000 payable at the end of the year of death.

This policy will be paid by a level benefit annual premium at the be-
ginning of the next 30 years while Ethan is alive.

Assume that δ = 0.05 and death is modeled using the constant force
of mortality µ = 0.03. Find the benefit annual premium for this policy.
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section 5.4

Premiums paid m times a year

Often insurance is funded sev-
eral times a year. The computa-
tion of the premium when premi-
ums are paidm times a year is sim-
ilar to the annual case. The total
amount of payments made a year
is called the annual funding rate and
it denoted by P (m). The funding
payment paid m times a year is
P (m)

m
.

Consider the case when the in-
surance is paid at the end of year

of death and funded with level payments made at the beginning of the
period of 1

m
years while the individual is alive. We assume the equiva-

lence principle is used.
For a whole life insurance to (x), the annual benefit premium is

P (m)
x =

Ax

ä
(m)
x

.

We can write

ä(m)
x =

1− A
(m)
x

d(m)
,

where

d(m) = m(1− v1/m).

And if we assume the uniform distribution of deaths, then we have

A(m)
x =

i

i(m)
Ax,

where

i(m) = m
(
(1 + i)1/m − 1

)
.
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Example 5.9. Consider the life table

x 80 81 82 83 84 85 86

lx 250 217 161 107 62 28 0

Assume that i = 6.5% and that the distribution of deaths is uniform
over each year of death.

Find P
(12)
80 , using that A80 = 0.8161901166.

Solution. We calculate

A
(12)
80 =

i

i(12)
A80 =

0.065

12
(
(1.065)1/12 − 1

)0.8161901166 = 0.8402293,

ä
(12)
80 =

1− A
(12)
80

d(12)
=

1− 0.8402293

12(1− 1.065−1/12)
= 2.543720

P
(12)
80 =

A80

ä
(12)
80

=
0.8161901166

2.543720
= 0.3208648.

section 5.5

Benefit Premiums - Adju
ing for Ex-

penses

5.5.1 Fully discrete insurance

When finding the annual premium expenses and commissions have
to be taken into in account. Possible costs are underwriting (making the
policy) and maintaining the policy.

The annual premium which an insurance company charges is called
the gross annual premium. It is also often called the contract premium, the
loaded premium and the expense-augmented premium.

Usual types of expenses are:
(1) Issue cost.
(2) Percentage of annual benefit premium.
(3) Fixed amount per policy.
(4) Percentage of (face value) contract amount.
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(5) Settlement cost.
Often the expenses related with the contract amount, are given as

per thousand expenses, i.e. the per thousand expenses are the expenses
made for each $1000 of the face value of the insurance.

Example5.10. Suppose that we have a whole life insurance on (x), with
a death benefit of b paid at the end of the year of death. The fixed annual
cost has an amount of e. In the the first year, there exists an additional
cost of e∗0. The percentage of the expense-augmented premium paid in
expenses each year is r. During the first year, it is paid an additional
percentage of the expense-augmented premium of r∗0. The settlement
cost is s. All cost except the settlement cost are paid at the beginning of
the year. The insurance is funded by an expense-augmented premium of
G paid at the beginning of the year while (x) is alive. If the equivalence
principle is used, then

G =
e∗0 + (b+ s)Ax + eäx

(1− r)äx − r∗0
.

Indeed, the expected present value of the insurance liabilities and ex-
penses is

bAx + eäx + e∗0 + rGäx + r∗0G+ sAx.

The expected present value (APV) of benefit premiums is Gäx. Using
the equivalence principle,

Gäx = e∗0 + (b+ s)Ax + eäx +G(räx + r∗0),

which implies that

G =
e∗0 + (b+ s)Ax + eäx

(1− r)äx − r∗0
.

Recall that the annual benefit payment of the unit insurance can be
calculated as

Px =
Ax

äx
,

and that

äx = E(1 + v + . . .+ vKx) =
1− E(vKx+1)

1− v
=

1− Ax

d
,
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so that Ax = 1− däx and, therefore, Px + d = 1/äx.
By using these identities, we can see that the expence-augmented pre-

mium can be expressed in terms of the net premium as follows.

G =
e∗0(Px + d) + (b+ s)Px + e

(1− r)− r∗0(Px + d)
.

Example 5.11. A fully discrete whole life insurance policy with face
value of $50, 000 is made to (x). The following costs are incurred:

(1) $800 for making the contract.
(2) Percent of expense-loaded premium expenses are 6% in the first

year and 2% thereafter.
(3) Per thousand expenses are $2 per year.
(4) Px = 0.11.
(5) All expenses are paid at the beginning of the year.
(6) d = 5%.

Calculate the expence-augmented annual premiumusing the equivalence
principle.

Solution. We have that

Gäx = (50, 000)Ax + 800 + (0.04)G+ (0.02)Gäx + (2)(50)äx.

Hence,

G =
(50, 000)Ax + 800 + (2)(50)äx

(0.98)äx − 0.04

=
(50, 000)Px + 800(Px + d) + (2)(50)

(0.98)− (0.04)(Px + d)

= 5, 883.32.

5.5.2 Fully continuous insurance

The fully continuous case is similar to the fully discrete case. Let b
be the death benefit paid at the time of the death. The fixed issue cost
is e∗0. The percentage of the expense-augmented premium paid in ex-
penses at issue is r∗0. There is an annual rate of contract expenses of
e paid continuously while (x) is alive. The percentage of the expense-
augmented premium paid continuously in expenses while (x) is alive is
r. The settlement cost is s.
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LetG be the expense-augmented annual premium rate using the equiv-
alence principle. Then, we have that

Gax = bAx + e∗0 + r∗0G+ eax + rGax + sAx,

which implies

G =
e∗0 + (b+ s)Ax + eax

(1− r)ax − r∗0
.
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