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Chapter 1

Matrix operations and row
echelon reduction

Reading for this Lecture

1.1 Matrix products
Let x be an n-dimensional column vector with entries xi, i = 1, . . . , n and
A be an m× n matrix with entries aij , i = 1, . . . ,m, j = 1, . . . , n. Then the
matrix-vector product b = Ax is the m-dimensional vector with entries

bi =

n∑
j=1

aijxj , i = 1, . . . ,m. (1.1)

Sometimes it is convenient to write explicitly the dimensions of matrices in
a subscript and then we write

bm×1 = Am×nxn×1.

This formula can be interpreted in several ways:

1. One can think about x and b as elements of vector spaces V = Rn

and W = Rm written in specific coordinate bases. Then the formula
b = Ax shows how a linear transformation A acts on vector x. That
is, the formula (1.1) explains how to calculate the coordinates of the
image b = (b1, . . . , bm) in a basis of W = Rm from the coordinates of
vector x = (x1, . . . , xn) in a basis of V = Rn. In particular if ej is the
j-th basis vector of Rn so it has coordinates (0, 0, . . . , 1 . . . , 0) with 1 in
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the j-th place, than the calculation gives vector Aej = (a1j , . . . , amj).
So, in this interpretation, the number aij is the i-th coordinate of the
image Aej in the given basis of W .

2. In a different interpretation of formula (1.1) matrix A is seen a collec-
tion of n column vectors ai, each of dimension m. Then, the formula
explains how to calculate the linear combination of these vectors with
coefficients provided by vector x. It can be re-written as

b =
n∑

i=1

xiai, (1.2)

where we should remember that each xi is a number and each ai is an
m-dimensional column vector with entries (a1i, . . . , ami). In short, in
this interpretation x acts on columns of A to produce b.

Example 1.1.1. Suppose our vector space V is the space of polyno-
mials with real coefficients modulo xn+1. The usual basis consists of
polynomials 1, x, x2, . . . , xn.

1. What is the matrix of the differentiation operator (D : P (x) →
P ′(x))in this basis?

2. What is the matrix of the integration operator S : P (x) →
∫ x
0 P (t) dt)?

3. What is the matrix of the shift: T : P (x) → P (x+ 1)?

4. Represent a sum of 3 polynomials, Pi(x) ∈ V , i = 1, 2, 3 by using
matrix multiplication.

Similarly, if A and C are two matrices, A is l×m and C is m× n, then
we can define the matrix-matrix product B = AC,

Bl×n = Al×mCm×n,

with entries defined by

bij =
m∑
k=1

aikckj . (1.3)

This product can also be interpreted in several ways:
1. If A and C are matrices representing linear transformations Rn → Rm

and Rm → Rl, respectively, then B = AC is a matrix that represents
a composition of these linear transformations Rn to Rl. (As usual for
compositions of maps, composition is from right to left: C acts first,
and A second.)
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2. Alternatively, we can think about B as matrix such that each column
of B is a linear combination of columns of A. The first column of B is
the linear combination of column vectors ai of A with the coefficients
equal to components of vector c1, which is the first column of C; the
second column of B is the linear combination of ai with the coefficients
in c2 and so on. As a result we get n linear combinations and each of
them is a column vector in Rl.

Example 1.1.2. What is the matrix of the composition of the integration and
differentiation operators from the previous example? That is, what is the
matrix of S ◦D? What about D ◦ S?

1.2 Transposition and conjugate transposition
A transposition of an m× n matrix A is the n×m matrix At for which the
entry (At)ij equals the entry Aji of the original matrix.1

In the situation when matrix A has complex-valued entries, it is typically
more useful to define a conjugate transpose matrix A∗, with the entry (At)ij
equal to Aji, where the line over the number denotes complex conjugation
(that is, x+ iy = x− iy). 2 For real matrices A∗ = At, so we will sometime
use notation A∗ for both real and complex matrices.

For various problem, an especially important class of real-valued ma-
trices is that of symmetric matrices, which satisfy the condition A = At.
For complex valued matrices, the equivalent concept is that of Hermitian
matrices: A = A∗.

Trefethen and Bau book uses the name adjoint matrix for A∗ and self-
adjoint for Hermitian matrices by borrowing the terminology from the theory
of linear operators.

A useful property of transposition is that (AB)∗ = B∗A∗.
Indeed, (AB)ij =

∑
k AikBkj for every i and j. So,

((AB)∗)ji = (AB)ij =
∑
k

AikBkj =
∑
k

(B∗)jk(A
∗)ki = (B∗A∗)ji,

for every i and j, which implies the required identity. (We used a property
of the complex conjugation that says that zw = zw.)

1The notation AT is also common.
2Sometimes, the congujate transpose matrix is denoted AH .
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1.3 Inner and outer products of vectors
The inner product (also called dot product or scalar product) of two m-
column vectors x and y is the matrix product of x∗ and y. It is a number
(or 1× 1 matrix)

x∗y =
m∑
i=1

xiyi.

This product is often denoted (x,y) or ⟨x,y⟩.
The outer product of column vectors x,y ∈ Cm is the m × m matrix

xy∗. The element in i-th row and j-th column is simply a product of i-th
component of x and j-th component of y:

(xy∗)ij = xiyj .

(For real matrices, one can ignore complex conjugation in these formulas.)
e

Remark: In this definition of the scalar product, the standard basis has
the property (ei, ej) = δij , where δij is the Kronecker delta: it is 1 if i = j
and 0 if i ̸= j. Often, the scalar product is defined on a vector space V
as a map V × V → R (in the real-valued case) that satisfy several axioms:
(c1v1 + c2v2, w) = c1(v1, w) + c2(v2, w), (v, w) = (w, v). Then, it can be
proved that one can find a basis in which (ei, ej) = δij holds and then one
can use the definition given above.
Example 1.3.1. At the space of all polynomials one can define the following
scalar products:

1.

(P,Q) =

∫ 1

−1
P (x)Q(x) dx,

2.

(P,Q) =

∫ ∞

−∞
P (x)Q(x)e−x2/2 dx.

These are valid scalar products, however, the standard basis does not have
the required property (xk, xl) ̸= δk,l. We will see that one can find polyno-
mials Pk(x) that have the property

(
Pk(x), Pl(x)

)
= δk,l. These polynomials

are called orthogonal polynomials and they are quite important.
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1.4 Elementary row transformations and LU de-
composition

Recall that the elementary row operations are exchanges of rows, multiplica-
tion of a row by a non-zero constant, and subtraction of a row from another
row.

From the second interpretation of the matrix product, which we intro-
duced in Section 1.1, we know that we can manipulate columns of matrix A
by multiplying A on the right by a matrix C. Similarly, we can manipulate
rows of A by multiplying it on the left by a suitable matrix C.

In particular, elementary row transformations can be realized by multi-
plying matrices on the left by elementary matrices. For example, subtraction
of the twice the row 1 from the row 2 can be realized by multiplying on the
left by the following matrix

1 0 0 . . . 0
−2 1 0 . . . 0
0 0 1 . . . 0
. . .


These row manipulations are all that we need to perform the Gaussian

elimination. If we apply the Gaussian elimination to a square matrix A, at
the end we obtain an upper diagonal matrix U .

Figure 1.1: Schematics of Gaussian elimination

All the matrices we applied on the left were lower diagonal with 1 on the
main diagonal, and the product of such matrices, L̂ = Ln−1 . . . L1, is also
lower diagonal with ones on the main diagonal. We get a formula L̂A = U ,
where U is upper diagonal.

It is easy to get L̂ by applying the row transformations to the extended
matrix: (A|In), where In is the n × n identity matrix. Then at the end of
the row reduction process, we will get matrix (U |L̂).
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The inverse of the matrix L̂ is also lower-diagonal. This can be checked
by undoing the transformations one-by-one. For example the inverse of the
matrix L1 above is the matrix

L−1
1 =


1 0 0 . . .
2 1 0 . . .
0 0 1 . . .
· · · · · · · · · 0


And (L̂)−1 = L−1

1 . . . L−1
n−1.

So, finally, we get a decomposition

A = LU,

where L = (L̂)−1 is lower-diagonal with ones on the main diagonal and U is
upper-diagonal.

This is called the LU decomposition of matrix A. It turns that if this
factorization exists then it is unique.
Example 1.4.1 (Calculation of LU factorization).

The algorithm we have just described can fail if at the k-th step the
entry ãkk of the transformed matrix Ã is zero. Also, from the numerical
point of view it is not good if ãkk is very small even if it is not exactly 0. In
these cases we can use an entry ãik with i > k to eliminate entries in column
k. Typically, it is done by exchanging the rows i and k and then using the
usual elimination operation.

Figure 1.2: Elimination with pivoting

So, we get a formula

Ln−1Pn−1Ln−2Pn−2 . . . L1P1A = U,
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where Pi are permutation matrices, that is, matrices that have exactly one
1 in each row and column and 0s in all other places.

However, it seems that this breaks down the lower-diagonal structure of
the matrix that premultiplies A. Somewhat surprising it turns out that this
structure is not quite lost and we can write

Ln−1Pn−1Ln−2Pn−2 . . . L1P1 = L′
n−1L

′
n−2 . . . L

′
1P

where P is a permutation matrix and L′
i are lower-diagonal matrix. The

proof of this a bit tricky and we refer the reader to the textbooks. However,
it implies the following result.

Theorem 1.4.2. Suppose A is an arbitrary square matrix. There is a
permutation matrix P , a lower-diagonal matrix L with ones on the main
diagonal and an upper-diagonal matrix U , so that

PA = LU.

1.5 Exercises
Exercise 1.5.1. Let B be a 4 x 4 matrix to which we apply the following
operations:

1. double column 1,
2. halve row 3,
3. add row 3 to row 1,
4. interchange columns 1 and 4,
5. subtract row 2 from each of the other rows,
6. replace column 4 by column 3,
7. delete column 1 (so that the column dimension is reduced by 1).
(a) Write the result as a product of eight matrices.
(b) Write it again as a product ABC (same B) of three matrices.

Exercise 1.5.2. Let X be a matrix

X =

[
A B
C D

]
.

where A and D are n × n and m × m matrices, respectively, and suppose
that A is invertible.

The Schur complement matrix S is defined through the formula[
I 0

−CA−1 I

] [
A B
C D

]
=

[
A B
0 S

]
10



Express S in terms of matrices A, B, C and D. What are the dimensions
of S?
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Chapter 2

Dimension, Range,
Nullspace, Rank, Inverse

2.1 Dimension of vector spaces
[This is a stub for a lecture note. For a good explanation see Section 2.5 in
S. Treil “Linear Algebra done wrong”]

However, we would also like to mention the following useful fact. Let
V +W := span(V,W ) denote the linear subspace formed by all linear com-
binations of vectors in V and W , and let V ∩W denote the intersection of
V and W . Then

dim(V +W ) = dim(V ) + dim(W )− dim(V ∩W ). (2.1)

(Intuitively, this is because we can form a basis of the span(V,W ) by taking
a basis in V ∩W and complementing it to bases in V and W respectively.
Then, if we count elements of the basis of V and then all elements of basis
of W , then all elements of the basis of span(V,W ) will be counted but the
elements of the basis of V ∩W will be counted twice, so we need to subtract
their number from the final count.)

In case when V ∩W = {0}, the sum V +W is called the direct sum and
denoted V ⊕W . In this case, we have dim(V ⊕W ) = dim(V ) + dim(W ).
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2.2 Range, Nullspace, Rank, Nullity, Inverse Ma-
trix

Definition 2.2.1. The range of an m× n matrix A, denoted Range(A), is
the set of vectors in Rm, that can be expressed as Ax for some x.

(It is also frequently denoted Im(A).)
If we use Interpretation 2 for the product Ax, we can easily see that this

is the set of all linear combinations of columns of matrix A. This set is a
linear space because any linear combinations of vectors from Range(A) is still
a linear combination of columns of A, and therefore belongs to Range(A)).
Hence, Range(A) is also the linear space spanned by columns of A. (This is
Theorem 1.1 in Trethefen-Bau.) For this reason it is also called the column
space of A.

The column rank of a matrix A is the dimension of Range(A) (or its
column space).

Definition 2.2.2. The null-space of m × n matrix A is the set of vectors
x ∈ Rn such that Ax = 0. It is denoted Null(A) or ker(A).

The dimension of the nullspace is called nullity of A.
Intuitively, if we think about Ax = 0 as a system of m equation in n

variables, then the nullity measures the size of the solution space. The rank
measures the size of the space of those b which can be represented as b = Ax.

How we can we find out the rank and nullity of a matrix? The classical
method is to reduce the matrix to its reduced row echelon form (”rref”) by
elementary row transformations.

Recall that the elementary row operations are exchanges of rows, mul-
tiplication of a row by a non-zero constant, and subtraction of a row from
another row.

You can convince yourself that the elementary row operations do not
change the dimension of the column space: if several columns are depen-
dent/independent, then they remain dependent/independent after an ele-
mentary transformation used in the reduction process.

Formally, this is a consequence of the fact that the matrix multiplication
has the distributive property. If columns v1, . . . , vk are linearly dependent:
c1v1 + . . . + ckvk = 0, and an elementary row transformation is given by
the left multiplication by matrix L, then the images of these rows are also
linearly dependent:

c1(Lv1) + . . .+ ck(Lvk) = 0.
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One can also go in the opposite direction because every elementary row
operation can be undone by another elementary row operation.

Note, however, that the dimension of the null-space is also not changing
under this process! In fact, the null space itself is the same for the original
and the transformed matrix. (This is actually why the reduction to the
row echelon form is used to solve systems of linear equations.) If Ax = 0
then LAx = 0 so x is in the null-space of the transformed matrix LA.
Conversely, if LAx = 0, then we know that there is a matrix L−1 that undo
the elementary transformation L so we can apply it on both sides of the
equation and we get: L−1LAx = L−10 so Ax = 0.

To summarize: the elementary row transformations do not change the
rank and the nullity of a matrix A.

In particular we can reduce A to the reduced echelon row form and for
the matrix in the reduced echelon form, it is easy to determine the rank and
the nullity of the matrix. They are equal to the number of pivot and free
variables, respectively.

Here is an example. Let the matrix be

A =

1 3 0 −1 2
2 6 1 −1 7
1 3 1 0 5

 ,

Then we can reduce it to the following matrix

rref(A) =

1 3 0 −1 2
0 0 1 1 3
0 0 0 0 0

 ,

then we have two pivot variables (corresponding to the entries shown in
red) and three free variables (corresponding to blue entries), hence the rank
and the nullity of the matrix are 2 and 3. (From the algorithmic point of
view, the column space Range(A) is generated by the first and the third
columns of the original matrix A: (1, 2, 1) and (0, 1, 1), and the null space
of A is the same as the null-space of rref(A) generated, for example, by
vectors (−3, 1, 0, 0, 0), (1, 0,−1, 1, 0), and (−2, 0,−3, 0, 1) , – we simply set
one free variable to 1 and all others to 0 and determine the value of all other
variables. So to get the last vector we set x2 = 0, x4 = 0 and x5 = 1; from
the equation corresponding to the second row we get x3 = −3, and from the
equation corresponding to the first row we get x1 = −2.)

This algorithm essentially proves one of the most fundamental theorems
of linear algebra:
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Theorem 2.2.3. For an m× n matrix A,

nullity(A) + rank(A) = n.

That is, the sum of dimensions of the range and the nullspace are equal
to the number of columns. (If we think about A as a linear transformation
Rn → Rm, then the dimension of the source space Rn equals the sum of
the dimension of the null-space, that is all vectors that will go to 0, and the
dimension of the range space.)

One can also define the row space and row rank similarly, as the linear
space spanned by the rows of the matrix A and its dimension.

One can easily check that elementary row operations do not change the
row space.1 Indeed, let x = c1r1 + . . . ckrm, where r1, . . . rm are rows. The
rows of a transformed matrix can be easily written as the linear combinations
of the rows of the original matrix. For example, if we subtract twice the row
1 from the row 2 then the new rows will be r′1 = r1, r′2 = r2 − 2r1, r′3 = r3,
and so on. Then we can write x in terms of new rows. In our example this
is x = c1r

′
1 + c2(r

′
2 + 2r′1) + . . . + ckr

′
k. So it is clear that x is in the row

space of the transformed matrix LA.
It follows the elementary row operations preserve not only the column

rank but also the row rank. So the row rank also can be computed as the
row rank of the reduced row echelon. But for this form, the row rank equals
the number of non-zero rows, so it equals the number of pivot variables!
(Look at the previous example to convince yourself.) This proves another
fundamental theorem of linear algebra:

Theorem 2.2.4. For every matrix A,

column rank(A) = row rank(A).

In particular one can simply talk about the rank of a matrix A, denoted
rank(A).2

It is clear that rank(A) ≤ min{n,m}.

Definition 2.2.5. For an m× n matrix A, if rank(A) = min{n,m}, we say
that matrix A is of full rank.

1They do not change the nullspace and they do not change the row space but they do
change the columns space, although they preserve the dimension of the column space!

2For reference, more information about rank can be found in Chapter 2 of Strang’s
Linear Algebra book and Chapter 2, Section III of Hefferon’s Linear Algebra book.
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What does this mean intuitively that a matrix has full rank?
If m ≥ n then the matrix A is of full rank if A has rank(A) = n so by

the fundamental Theorem 2.2.3 nullity(A) = 0 and so A have the trivial
null-space. In particular, if we consider m-by-n matrix A as a map from
a linear space of all n-vectors Rn to the linear space of m-vectors Rm (our
interpretation #1) then this map is a bijection of Rn onto the column space
Range(A). In particular, two different vectors of Rn must go to two different
vectors of Range(A). Otherwise we would have Ax1 = Ax2, so A(x1−x2) =
0 and if x1−x2 ̸= 0, we have a contradiction with the triviality of null-space.

If m ≤ n then the matrix A has full rank if rank(A) = m. Therefore, A
is a surjection of Rn on Rm. (That is, every vector b in Rm can be written
as Ax for some x ∈ Rn.)

If m = n (the matrix A is square), and the matrix A has full rank, we
see from the previous two facts that map A is a bijection of Rn on Rm ∼= Rn

and so there exists an inverse transformation. One can check that this
transformation is linear. The matrix of this inverse transformation is called
the inverse of matrix A and denoted A−1.

This is content of Theorem 1.2 in Trefethen-Bau.

Theorem 2.2.6. A square n×n matrix A has full-rank if and only if there
exists an n×n inverse matrix A−1 with the properties AA−1 = A−1A = In,
where In is the n× n identity matrix.

(The identity matrix has ones on the main diagonal and zeros everywhere
else: Ikl = 1 if k = l and Ikl = 0 if k ̸= l.)

It is useful to note that it is enough to check only one of the conditions
AA−1 = A−1A = In in the theorem. For example, if a square matrix A has
a right inverse B such that AB = I, then it is also true that BA = I. (It is
crucial here that the matrix A is square.)3

In particular, in this case for every vector y = Ax, we can recover x by
using the inverse matrix, as x = A−1y.

For numerical applications, it is important to remember that one does
not need to calculate the inverse matrix A−1 in order to solve the equation
y = Ax for one single vector y. The Gaussian elimination (that is, the
reduction to the echelon form) which you studied in the first linear algebra

3The proof is as follows. Since AB = I, hence B has trivial nullspace. (Otherwise we
could find a vector x 6= 0 such that Bx = 0, hence ABx = 0. But (AB)x = Ix = x so we
have x = 0, contradiction.) By the rank-nullity theorem the range of B is Rn and so it
is a bijective transformation Rn 7→ Rn. Hence B has a right inverse. Call it X. For this
matrix X, we have BX = I. Then (AB)X = X and A(BX) = A. By associativity of
matrix multiplication X = A and so we proved that BA = I.
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Figure 2.1: Interpretation of multiplication by A, b = Ax, as “the change of basis”
operation.

course4 is significantly more efficient and simple method to do it. The only
reason for inverting matrix A is if you plan to solve many equations y = Ax
for various y.

We have two interpretations for multiplication by matrix A. Correspond-
ingly, there are two interpretations for the multiplication by the inverse
matrix A−1.

1. If multiplication by a square matrix A is interpreted as a linear trans-
formation x → y = Ax from V = Rn to W = Rn, then multiplication
by A−1 is simply the inverse transformation y → x from W → V .

2. If the multiplication is understood as taking a linear combination of
columns of A with coefficients from x, then A−1y is the vector of
coefficients of the expansion of y in the basis of columns of A. In other
words, multiplication by A−1 can be understood as the change of basis
operation. (We are given y in a standard basis, and we have a new
basis v1, . . . , vn. We write the coordinates of each vi in the standard
basis as i-th column of matrix A. Then the coordinates of y in the
new basis are given by the entries of the vector A−1y.)

Note, however, that in this calculation of coefficients of a vector in the
basis of columns of A we assumed that A is n×n and the range of A equals
the target space Rn. We will talk more about this later when A is m × n,
m > n and so the range can be smaller than Rm.

4Chapter 1 in Strang, or Chapter 1, Section I of Hefferon
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It is also worthwhile to mention two useful properties of the inverse
operation:

1. (AB)−1 = B−1A−1.

2. (At)−1 = (A−1)t.
To see that the first property holds, note that AB is the composition of the
linear maps A and B in which B acts first, and A second. We can invert
this composition by doing A−1 first and B−1 second. This corresponds to
the product B−1A−1.

For the second property, let B := A−1. Then, we have AB = I. By
taking the transposition on both sides and using one of the properties of tthe
transposition operation, we get BtAt = I. This means that Bt = (At)−1.
Example 2.2.7 (Calculation of the inverse matrix: Gauss-Jordan method).
Example from Strang p.53. Calculate the inverse of the following matrix

A =

 2 1 1
4 −6 0
−2 7 2


Answer:

A−1 =

 12
16 − 5

16 − 6
16

4
8 −3

8 −2
8

−1 1 1


2.3 Rank-1 matrices
We looked at the matrices of full rank. What about the matrices of small
rank? One important case occurs when we have a matrix of rank one. In
this case, the dimension of the range is 1, and by the fundamental Theorem
2.2.3 the dimension of the null space is n− 1.

Since the dimension of column space is 1, it means that all columns are
proportional to a single column (b1, . . . , bm)t. So, the matrix can be written
as follows:

A =


a1b1 a2b1 . . . anb1
a1b2 a2b2 . . . anb2
. . .
a1bm a2bm . . . anbm

 = bat,

where b = (b1, . . . , bm)t and a = (a1, . . . , an)
t are two column vectors.

Hence, we can conclude that every matrix of rank 1 is an outer product
of two (non-zero) vectors.
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2.4 Exercises
Exercise 2.4.1. Let v1 = [1, 2, 3]t, v2 = [0, 1, 3]t, v3 = [1, 0, 1]t. Find the
coordinates of the vector x = e1 = [1, 0, 0]t in the basis {v1, v2, v3}.

Exercise 2.4.2. Write the matrix
((

(AB)t
)−1

)t

in terms of A−1 and B−1.

Exercise 2.4.3. By using the reduction to the rref form, find the bases for
the column space and nullspace of A and the solution to Ax = b:

A =

2 4 6 4
2 5 7 6
2 3 5 2

 b =

43
5


Exercise 2.4.4. Let f1, . . . f8 be a set of functions defined on the interval
[1, 8] with the property that for any numbers d1, . . . , d8, there exists a set of
coefficients cl, . . . , c8 such that

8∑
j=1

cjfj(i) = di, i = 1, . . . , 8.

(a) Show by appealing to the theorems of lecture 1 in Trefethen, Bau
that d1, . . . , d8 determine c1, . . . , c8 uniquely.

(b) Let A be the 8×8 matrix representing the linear mapping from data
d1, . . . , d8 to coefficients c1, . . . , c8. What is the i, j entry of A−1?
Exercise 2.4.5. Let u and v are two vectors in Rn. The matrix A = I + uv∗

is known as a rank-one perturbation of the identity. Show that if A is
nonsingular (that is, if it has an inverse), then its inverse has the form
A−1 = I +αuv∗ for some scalar α and give an expression for α. For what u
and v is A singular? If it is singular, what is Null(A)?
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Chapter 3

Norms and orthogonality

Reading for this Chapter

• Trefethen, Bau: Lecture 2, 3

• Strang: Chapter 3.

3.1 Vector norms
Intuitively, a norm is a way to measure how long is a given vector.

Mathematically, a norm is a non-negative function on a linear space,
which has the property ∥cv∥ = |c|∥v∥, and satisfy the triangle inequality:
∥u+ v∥ ≤ ∥u∥+ ∥v∥. It is also required that ∥u∥ = 0 implies that u = 0.

These axioms are satisfied by the Euclidean length of vector u,

∥u∥ =
√

u21 + . . .+ u2n =
√
u∗u.

(We will sometimes write |u| instead of ∥u∥ if no confusion can arise.) This
norm is called the Euclidean norm, and it is the usual norm that will use
here.

It is useful to know that there are other norms besides the Euclidean
norm. For example, a p-norm is defined for every p ≥ 1 as follows. If
x ∈ Rn, then

∥x∥p =
( n∑

i=1

|xi|p
)1/p

.
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Figure 3.1: Unit balls for different vector norms

This is an exercise that this function is indeed a norm.1
If we look at p → ∞ then we get a so-called supremum norm:

∥x∥∞ = sup
i

|xi|.

In this notation, the Euclidean norm can be called 2-norm since it corre-
sponds to the case p = 2. So, more proper notation for this norm would be
∥v∥2. However, we will usually use this norm rather than any other p-norm
and so we will skip this subscript.

The great advantage of the 2-norm (i.e., the Euclidean norm) is that it
equals the square root of the inner product of the vector with itself. Because
of this, it enjoys some properties which are not true for other norms. For
example, if we want to find out what is the point in a linear subspace with the
smallest distance from a given point, where the distance is measured using
the 2-norm, then we can use the orthogonal projection operator (which we
discuss later). In contrast, if we measure distance not in the usual 2-norm
but in a different norm, then this would not be true anymore and it would
be more difficult to find this point.

On the other hand, the p-norms for p ̸= 2 are sometimes used in modern
statistics, so you should know about them. For example, the lasso regression
uses the 1-norm of vectors.

1In contrast, one can check that if p < 1, then ‖x‖p is not a norm. This is a couple
of additional exercises. First is to check that if ‖ · ‖ is a norm, then this implies that the
unit ball B = {x : ‖x‖ ≤ 1} must be convex. And the second is to check that if p < 1,
then the unit ball is not convex.
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For the Euclidean vector norm, besides the triangle inequality, we have
the Cauchy-Schwarz inequality:

|xty| ≤ ∥x∥∥y∥,

and for more general p-norms, we have the Holder inequality:

|xty| ≤ ∥x∥p∥y∥q,

where p−1 + q−1 = 1.

3.2 Orthogonality
Orthogonality is a very useful concept. If we have an orthogonal system of
vectors, then it becomes much simpler to calculate the length of a linear
combination of these vectors provided that the length is measured by using
the usual Euclidean norm (that is the 2-norm). In addition the orthogonal
matrices have the property that corresponding transformations conserve the
lengths.

3.2.1 Orthogonal vectors and matrices
Definition 3.2.1. Two vectors u, v are called orthogonal (or perpendicular)
if their inner product is zero, u∗v = 0. In this case we will write u ⊥ v.

A set of vectors u1, . . . , un is called an orthogonal system if they are all
non-zero and they are pairwise orthogonal: ui ⊥ uj for all i ̸= j. It is called
an orthonormal system if it is an orthogonal system and each of these vectors
have length 1.

One useful thing about systems of orthogonal vectors is that we can use
them to decompose an arbitrary vector in orthogonal components. First of
all, we have the following result.

Theorem 3.2.2. The vectors of an orthogonal system are linearly indepen-
dent.

Proof. Suppose they are dependent. The we can write, after reordering these
vectors,

v1 =
n∑

i=2

λivi,
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where at least one of λi is not zero. Say, λi ̸= 0. Then (v1, vi) = λi|vi|2 ̸= 0,
and vectors v1 and vi are not orthogonal.

And here is how to decompose an arbitrary vector v as a linear combi-
nation of the vectors in the orthonormal system and a “residual”.

Theorem 3.2.3. Let {u1, . . . un} is an orthonormal set of vectors in Rm,
where m ≥ n. Then for every vector v ∈ Rm, there exists a unique decom-
position:

v = r +
n∑

i=1

ciui,

in which vector r is orthogonal to each of vectors ui. The coefficients can be
computed as ci = (ui, v) = (u∗i v).

Note: the theorem remains valid for complex vectors.

Proof. The existence will be proved if we show that

r = v −
n∑

i=1

(u∗i v)ui

is orthogonal to each of vectors ui. By multiplying with ui, we get

(r, ui) = (v, ui)− (ui, v)(ui, ui) = 0,

which is the required property.
For uniqueness, we note that if we have two decompositions like that,

then we can subtract them. As a result we would have that either r = r′, and
ui are linearly dependent, or r ̸= r′ and the orthogonal set r− r′, u1, . . . , un
is linearly dependent. Both are not possible by Theorem 3.2.2.

A real matrix is called orthogonal if:
(i) it is a square matrix, and
(ii) The set of its column vectors is orthonormal.

(If a matrix has complex entries and satisfies conditions (i) and (ii), it
is called a unitary matrix.) The usual notation for orthogonal and unitary
matrices is Q and U .

The definition essentially says that Q is orthogonal (unitary) if and only
if it is square and

Q∗Q = I,
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where I is the identity matrix, that is, Iij = δij .
For square matrices A and B, the identity AB = I implies that BA = I.

(This is a good exercise.) If Q is orthogonal then we also have QQ∗ = I.
(Note that if Q is not square then it can happen that Q∗Q = I, but QQ∗ ̸=
I.)

Theorem 3.2.3 implies that the columns of the n× n orthogonal matrix
Q form a basis in Q (since in this case the maximal number of linearly
independent vectors is n), and the coefficients of a vector v in this basis can
be computed very conveniently as c = Q∗v.

Finally, an important property of linear transformations with orthogonal
(or unitary) matrix Q is that they preserves lengths of vectors.

∥Qv∥2 = (Qv)∗Qv = v∗Q∗Qv = v∗v = ∥v∥2.

3.2.2 Orthogonal subspaces and complements
Two linear subspaces V and W are orthogonal to each other (V ⊥ W ) if
every (non-zero) vector in V is orthogonal to every (non-zero) vector in W .

Note that the intersection of two orthogonal subspaces is always zero (i.e.,
the trivial subspace). Indeed, if v belongs to two subspaces simultaneously,
then v ⊥ v and ∥v∥2 = v∗v = 0, which implies that v = 0.

Let V ⊂ Rm be a linear subspace. Then its orthogonal complement of
V in Rm, denoted V ⊥, is the largest linear subspace in Rm orthogonal to
V . Alternatively, it is the set of all vectors u that are orthogonal to V .
Formally:

V ⊥ = {u ∈ Rm : u∗v = 0 for all v ∈ V }.

Theorem 3.2.4. For any V ⊂ Rm,

span(V, V ⊥) = Rm.

Proof. Let W = span(V, V ⊥). Suppose, by seeking contradiction, that
W ̸= Rm. Then, we can find a vector x /∈ W . Take an orthonormal basis
w1, . . . , wn of W and apply Theorem 3.2.3 to write x = r+

∑n
i=1 ciwi. This

gives a vector r ̸= 0 such that r /∈ W and therefore r /∈ V ⊥. In addition, r
is orthogonal to all wi. In particular, r ⊥ W . Since V ⊂ W so r ⊥ V and
therefore r ∈ V ⊥. Contradiction.
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(This proof have one non-clear step since we assumed that we are always
able to build an orthonormal basis of W . Later we will see how to find this
basis by the Gram-Schmidt orthogonalization process. )

Theorem 3.2.5. If V ∈ Rm and dim(V ) = k then dim(V ⊥) = m− k.

Proof. Let W = span(V, V ⊥) ⊂ Rm. Then we can use the fact that V ∩
V ⊥ = 0 and therefore by (2.1), dim(W ) = dim(V )+dim(V ⊥), and therefore
dim(V ⊥) = dim(W )− dim(V ).

So it is enough to show that W = Rm. But this holds by Theorem
3.2.4.

Corollary 3.2.6. If V ⊥ is orthogonal complement to V in Rm, then V is
an orthogonal complement to V ⊥ in Rm.

Proof. It is clear that all vectors in V are orthogonal to all vectors in V ⊥

(simply by definition of V ⊥). So V ⊂ (V ⊥)⊥. In addition, we can calculate
that dim(V ) = dim((V ⊥)⊥) and we use the fact that if one linear space is a
subspace of another one and they have the same dimension then they must
coincide.

Since V and V ⊥ have zero intersection and dim(V ) + dim(V ⊥) = m,
therefore we can construct the basis of Rm by taking the union of the bases
of V and V ⊥. In particular, every vector u in Rn can be represented in a
unique fashion as v + w where v ∈ V and w ∈ W .

How can we calculate this decomposition? We will see it later.
Now, here is an important example of orthogonal complements.

Theorem 3.2.7. For an m× n matrix A

1. The nullspace of A is the orthogonal complement of the row space of
A (i.e., the range of At):

Null(A)⊥ = Range(At) and Range(At)⊥ = Null(A).

2. The range of A is the orthogonal complement of the left nullspace of
A:

Range(A)⊥ = Null(At) and Null(At)⊥ = Range(A).

Proof. It is enough to prove one of these claims, since the proof of the other
follows by considering the transpose of matrix A. Let us prove the first one.
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If u ∈ Rn is in the row space of A then u = A∗z for some vector z ∈ Rm

(since u is a linear combination of rows of A, or the columns of A∗, and we
can form the linear combination by multiplying the matrix A∗ by a vector
z). Let v ∈ Null(A), then we can calculate the scalar product

u∗v = u∗v = (A∗z)∗v = z∗Av = 0,

where the last step holds because v ∈ Rn is in the null-space of A.
Hence the row space and the null-space are orthogonal. There is one

small detail left, namely, that we cannot find a larger orthogonal space to
the null-space.

The dimension of the row space of A is rank(A) and the dimension of
the null-space of A is n − rank so the sum of dimensions is n and we can
conclude that they are not only orthogonal but are actually complements of
each other.

In particular, it gives a method to calculate the orthogonal complement
to a subspace spanned by vectors c1, . . . cn. Write the matrix Ct with
rows given by ct1, . . . c

t
n, and calculate its nullspace (that is, the basis of

the nullspace).
Example 3.2.8 (Example of calculation). Find a vector in the orthogonal
complement to the column space of matrix

A =


1 1
0 1
2 4
2 2

 .

3.3 Exercises
Exercise 3.3.1. Let V = R5 and let U be the subspace of V spanned by the
vectors 

1
2
−1
1
1

 ,


1
0
0
1
0

 ,


−2
2
2
1
−2

 ,
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and W the subspace of V spanned by the vectors
3
2
−3
1
3

 ,


1
1
0
0
0

 ,


1
−4
−1
−2
1

 .

Determine the dimension of U ∩W .
Exercise 3.3.2. Find all vectors that are perpendicular to (1, 4, 4, 1) and (2,
9, 8, 2).
Exercise 3.3.3. In the vector space V = R5, consider the subspace U spanned
by the vectors 

2
2
1
7
−3

 ,


−4
1

−12
6
−4

 ,


1
1
3
4
0

 ,


0
0
3
1
2

 , and


−1
0
0
1
1

 .

(a) Compute dimU .

(b) Which of the vectors 
4
0
5
−3
−1

 ,


2
1
8
4
2

 ,


4
2
4
0
0

 , and


1
0
5
0
2


belong to U?

Exercise 3.3.4. Find a matrix A, which is in reduced echelon form, and
satisfies dim(Range(At)⊥) = 4, dim(Range(A)⊥) = 1.
Exercise 3.3.5. Let A be a real symmetric matrix. An eigenvector of matrix
A is a non-zero vector x such that Ax = λx for some number λ which is
called the eigenvalue corresponding to the eigenvector x.

Prove that if x and y are eigenvectors corresponding to distinct real
eigenvalues λ1 and λ2, then x and y are orthogonal.
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Chapter 4

Gram-Schmidt process and
QR decomposition

Reading for this Chapter

• Trefethen, Bau: Lecture 7

• Strang: Section 3.4

In some cases we are given a basis (a1, a2, . . .) of a linear space V and
we want to construct a orthonormal basis (q1, q2, . . . , qn). More generally,
we are given an increasing sequence of spaces (a flag)

V1 ⊂ V2 ⊂ . . . ⊂ Vn,

where Vk = span(a1, . . . , ak), and we want to construct an orthonormal
system of vectors q1, . . . , qn so that Vk = span(q1, . . . qn). This can be easily
done by the process that is called the Gram-Schmidt orthogonalization.

The process is recursive. At step 1, we take vector a1 and normalize it
to have the unit length:

q1 =
1

r11
a1,

where r11 = ∥a1∥.
At step k we take vector ak and subtract its projection on the subspace

Vk−1. This is easy to do because we already know (q1, . . . , qk−1), which form
an orthonormal basis of Vk−1. After this, we normalize the resulting vector
so that it has the unit length.
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Figure 4.1: A step of the Gram-Schmidt orthogonalization. q1 = a/∥a∥, B =
b− (q∗

1b)q1, q2 = B/∥B∥.

So,

vk = ak − (q∗1ak)q1 − . . .− (q∗k−1ak)qk−1,

qk =
1

rkk
vk,

where rkk = ∥vk∥. (Note also that rkk = q∗kvk = q∗kak.)
The process will continue without interruption, provided that the inclu-

sions Vk−1 ⊂ Vk are strict, which is the same as that the matrix A with
columns a1, . . . , an has full rank.

The formulas above can also be written differently, as

a1 = r11q1,

a2 = r12q1 + r22q2,

a3 = r13q1 + r23q2 + r33q3,

. . .

an = r1nq1 + r2nq2 + . . .+ rnnqn,

where rij = q∗i aj when i ≤ j.
In a matrix form it can be written as

A = Q̂R̂,

where A is an m × n matrix, Q̂ = [q1, . . . , qn] is an m × n matrix with
orthonormal columns and R is an upper-diagonal n×n matrix with positive
diagonal elements.
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R̂ =


r11 r12 r13 . . . r1n
0 r22 r23 . . . r2n
0 0 r33 . . . r3n
. . . . . . . . . . . . . . .
0 0 0 . . . rnn


This factorization is called the reduced QR factorization and the above

argument shows that if matrix A has full rank, then this factorization exists
and is unique. By extending matrix Q̂ to an orthogonal m ×m matrix Q,
and R̂ to an upper-diagonal m × n matrix R one can obtain the full QR
factorization, although this factorization is not unique.

Above, we showed how to calculate the QR factorization by using the
Gram-Schmidt orthogonalization. There exists a faster method to calculate
this factorization based on so-called Householder reflections. For details, see
the textbook by Trefethen and Bau.

Here is an example of a QR factorization from Strang’s textbook.

A =

1 1 2
0 0 1
1 0 0


=

1/√2 1/
√
2 0

0 0 1

1/
√
2 −1/

√
2 0

√2 1/
√
2

√
2

1/
√
2

√
2

0 0 1

 = QR

The Gram-Schmidt orthogonalization is a general process, which can be
applied not only to vectors in Rm but also to functions in a linear space of
functions. One only needs to define the scalar product of two functions. For
example if f(x) and g(x) are two real-valued functions, then we can define
the scalar product as an integral, provided that the integral is convergent.

There are different ways to define the scalar products,

(f, g) :=

∫ ∞

−∞
f(x)g(x) dx, or (4.1)

(f, g) :=

∫ 1

−1
f(x)g(x) dx, or (4.2)

(f, g) :=

∫ ∞

−∞
e−x2

f(x)g(x) dx, or (4.3)

. . .
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Two functions are called orthogonal if their scalar product is zero, and the
norm of a function is defined naturally as ∥f∥ =

√
(f, f).

Many properties of the vector norms can be extended to functions. In
particular the triangle inequality and the Cauchy-Schwarz inequalities hold.

The Gram-Schmidt orthogonalization can also be applied to a system of
functions f1(x), . . . , fn(x) and results in a system of orthonormal functions
q1(x), . . . , qn(x).

For example, many famous families of polynomials can be obtained in
this way by applying orthogonalization procedure to polynomials 1, x, x2, x3, . . .
with respect to various scalar products.

The Legendre polynomials are orthonormal with respect to scalar prod-
uct 4.2, Hermite’s polynomials are orthonormal with respect to scalar prod-
uct 4.3, etc.

This is important for the problems when one approximates functions by
other functions.

4.1 Exercises
Exercise 4.1.1. From the nonorthogonal a1, a2, a3, find orthonormal vectors
q1, q2, q3.

a1 =

11
0

 ,a2 =

10
1

 ,a3 =

01
1

 ,

Write matrix A as QR decomposition A = QR.
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Chapter 5

Projectors

5.1 Definition and properties
Reading:

• Section 3.3 in Strang

• Lecture 6 in Trefethen-Bau

In the previous chapter we have seen that if we have a system of n
orthonormal vectors q1, . . . , qn in Rm, then we can project every vector
x ∈ Rm on their span by calculating the projection vector

P (x) = (q∗1x)q1 + . . .+ (q∗nx)qn, (5.1)

and the residual vector

r = x− P (x),

and we know that r is orthogonal to every vector qi.
We can write the projection operator in formula (5.1) by using the matrix

Q = [q1, . . . , qn]. It easy to see that

P (x) = QQ∗x,

The matrix QQ∗ is a symmetric square m × m matrix with the following
property.

(QQ∗)2 = Q(Q∗Q)Q∗ = QQ∗,
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because Q∗Q is the identity matrix by orthonormality of vectors qi. Intu-
itively it says that projecting the same vector twice on the same subspace
does not change the results.

The residual can be written as

r = (I −QQ∗)x,

and it is easy to see that (I −QQ∗) is also a symmetric matrix that has the
property that

(I −QQ∗)2 = I −QQ∗

Now, we want to look at things more generally. What does it mean to
project a vector on a subspace from an algebraic point of view?

Definition 5.1.1. A projector is a square matrix P that satisfies the equa-
tion P 2 = P .

We do not require P to be symmetric at this moment.

Figure 5.1: Oblique Projector

The complementary projector for a
projector P is defined as I − P . It is
indeed a projector, since (I−P )2 = I−
2P + P 2 = I − P .

It is called complementary because
if we apply I−P and then apply P then
we get zero. So while P maps Rm on
Range(P ), I−P maps Rm on nullspace
of P . Formally, we have the following
proposition.

Proposition 5.1.2. Range(I − P ) =
Null(P ).

Proof. 1. P (I − P )v = 0, so Range(I − P ) ⊂ Null(P );

2. if some vector u ∈ Null(P ) then Pu = 0 and we can write u = (I−P )u
so Null(P ) ⊂ Range(I − P ).

Now, we have a decomposition of an arbitrary vector v = Pv+(I −P )v
into a sum of two vectors. One of them is from the range of P and another
one is from the nullspace of P . So we have a decomposition of vector v as a
sum of projections on the range and nullspace of P .
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Figure 5.2: Ortogonal Projector

The most useful projectors are or-
thogonal projectors, for which the vec-
tors in this decomposition are orthogo-
nal to each other. However, we need an
additional condition to ensure that this
property holds.
Example 5.1.3. Consider the outer
product of two vectors u and v. Then,

(uv∗)2 = (v∗u)uv∗.

So, according to Definition 5.1.1, this matrix is a projector if and only if
(v,u) = v∗u = 1. However, the range of this matrix is the set of all vectors
that are proportional to u and the nullspace is all vertices orthogonal to v.
So the matrix is an orthogonal projector only if v is proportional to u.

We can define the orthogonal projector as a projector P for which the
range and nullspace of P are orthogonal. However, it turns out that there
is a simpler definition, which is equivalent to this requirement.

Definition 5.1.4. An orthogonal projector P is a projector which is sym-
metric (or hermitian in the complex case): P ∗ = P .

Let us check that the range and nullspace of P are indeed orthogonal to
each other. Indeed if u1 ∈ Range(P ) and u2 ∈ Null(P ), then we can write
u1 = Pv and so

u∗2u1 = u∗2Pv = (P ∗u2)
∗v = 0∗v = 0.

Note that this argument would not work if P ∗ ̸= P .
Note that the complementary projector is also orthogonal since (I −

P )∗ = I − P ∗ = I − P .
Example 5.1.5. Suppose v is a column vector that has unit length. Then
matrix P = vvt is an orthogonal projector. Indeed,

P 2 = (vv∗)(vv∗) = v(v∗v)v∗ = vv∗ = P,

where in the second equality we used the fact that the matrix product is
associative and in the third equality that the vector has unit length. It is
also clear that P ∗ = P .

The projector in Example 5.1.5 is called a rank-one projector because
its range is one-dimensional: it is spanned by the vector v. Geometrically,
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Px = v(v∗x) is the projection of the vector x on the line L that has the
direction vector v.

One particular case is when v = 1√
n
[1, 1, . . . , 1]∗. In this case vv∗ = 1

nJ ,
where J is the n× n matrix consisting of all 1s.
Example 5.1.6. We have seen at the beginning of this section that if a matrix
Q has column vectors q1, q2, . . . , qn which form an orthonormal set, then
matrix P = QQ∗ is an orthogonal projector on the linear space spanned by
these vectors.

It is sometimes useful to write P = QQ∗ as a sum of rank-one projectors
from the previous example.

P = QQ∗ =
n∑

i=1

qiq
∗
i

Example 5.1.7. Now consider even more general case, when we want to
project on a vector space V spanned by vectors a1, a2, . . . , an which are not
necessarily orthogonal. Let matrix A have columns ai. Then we claim that
the orthogonal projection on V is

P = A(A∗A)−1A∗

Here we assume that A∗A is full rank and therefore invertible. (This require-
ment is equivalent to the requirement that columns a1, . . . , an of matrix A
are linearly independent, or equivalently that the nullspace of A is trivial.
See the Strang’s book p.184 for the proof of the fact that Null(A∗A) =
Null(A). )

First, by direct checking, P 2 = P and P ∗ = P , so P is an orthogonal
projection and we only need to check that it has the correct range which
should be V and the correct null-space, which should be the orthogonal
complement to V , denoted V ⊥.

Indeed, if a vector y is in V , then this means that it is in the range space
of A, that is, there is a vector x such that y = Ax. In this case it is obvious
that

Py = PAx = A(A∗A)−1A∗Ax = Ax = y,

so P preserves vectors in V . It remains to show that the vectors in the
orthogonal complement to V are sent to 0 by P . Since every vector v ∈ V ⊥

is orthogonal to every column in A, so we can write that A∗v = 0. Then it
is obvious that

Pv = A(A∗A)−1A∗v = 0.

35



5.2 Relation to Least Squares Regression
• Section 3.3 in Strang

• Lecture 11 in Trefethen-Bau

In statistics we often need to solve the following problem:

yi = β1x
(1)
i + . . . βnx

(n)
i + εi, (5.2)

where i = 1, . . . ,m labels observations, yi is the value of the variable that
we want to explain in observation i, and x

(1)
i , . . . , x

(n)
i are the values of n

“explanatory” variables in observation i. (They often called “features” in
machine learning.) In statistics, a linear regression is usually has a constant
term. Here we treat the constant term on the equal basis with other coef-
ficients. For example, we can think about the vector x(1) = (x

(1)
1 , . . . , x

(1)
n )

as the vector in which all components are equal to 1.
The numbers εi are “error terms”. In statistics, yi and sometimes also

xi are treated as random variables and εi are usually assumed to be taken
from a random process, often from a process of i.i.d. random variables and
sometimes from the process of i.i.d. Gaussian random variables. In this
example we are not interested in the random nature of yi, xi and εi. We
simply assume that we observed vectors y = (yi), and x(k) = (x

(k)
i ) where

i = 1, . . . , n and k = 1, . . . , p but that we do not know βk and εi.
One simple statistical method is Ordinary Linear Regression. It pre-

scribes to choose those coefficients βj , j = 1, . . . , n that the sum of the
squares of εj is at its minimum. (There is also a generalized least squares
method that weights different error terms differently.)

Another view on this problem is that we simply trying to solve an overde-
termined system of equations, where the number of equations m exceeds the
number of variables n. In this case, there is no exact solution and we trying
to minimize the norm of the vector of the residual terms εi.

We want to develop a simple formula for these values of βj .
Let us introduce m× 1 vector y = [y1, . . . , ym], an m×n matrix X with

entries Xij = x
(j)
i , the n×1 vector of coefficients β = [β1, . . . , βn], and m×1

vector of errors ε = [ε1, . . . , εn].
Then we can re-write equation (5.2) as

y = Xβ + ε,
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Our task is to minimize the norm of vector ε, which we can write as

(y −Xβ)∗(y −Xβ) → min

We can write the first order conditions as

∂

∂β
(y −Xβ)∗(y −Xβ) = 0.

Here, ∂
∂β f(β) is the vector of partial derivatives ∂

∂βj
f(β). One can check

directly that this leads to equations:

X∗(y −Xβ) = 0,

or
X∗Xβ = X∗y. (5.3)

(Indeed

∂

∂βj

∑
i

(yi −
∑
k

Xikβk)
2 = −2

∑
i

Xij(yi −
∑
k

Xikβk),

and this is equivalent to equation (5.3).)
In the traditional statistics, m > n, the number of observations exceeds

the number of explanatory variables. For this reason the rank of a typical
X equals n, so it is a full rank. It follows that X∗X is invertible and we can
solve equation (5.3) as

β = (X∗X)−1X∗y (5.4)

The equations in (5.3) are called normal equations and the matrix

X+ = (X∗X)−1X∗

is sometimes called the pseudoinverse of matrix X.
In statistical applications we are also interested in estimated true values

of yi, when the noise εi is filtered out. So we define the fitted values of y as
ŷ = Xβ. Then

ŷ = X(X∗X)−1X∗y.

This is the linear combination of explanatory random variables which min-
imizes the norm of the error term e = y −Xβ.
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From the point of view of linear algebra, ŷ is the orthogonal projection
of vector y on the linear space spanned by the vectors of the explanatory
variables x(1), …, x(n). The matrix of the projection is

P = X(X∗X)−1X∗

Note the matrix (X∗X)−1 is n-by-n, so the normal equations 5.3 are n
equations in n variables. They can be solved in various ways, for example
by Gaussian elimination, which is has the work of around n3 floating point
operations (flops). Since the matrix is symmetric and positive definite, this
can be solved also by Cholesky factorization in n3/3 flops. We will discuss
the Cholesky factorization later. In addition, one has to compute X∗X
which requires mn2 flops.

One other method of solving the normal equations is through the QR
factorization. Essentially its idea is to find the orthogonal basis in the space
spanned by the columns of X and calculate the projection by using this
basis.

Technically, we compute the QR factorization X = QR. Then the
normal equations become R∗Rβ = R∗Q∗y, which leads to the equation
Rβ = Q∗y. So the algorithm is

1. compute the QR factorization for X.

2. Calculate b = Q∗y [coefficients of the projected vector in the basis
given by columns of Q.]

3. Solve the equation

Rβ = b.

[This gives the coefficients of the projected vector in the old basis.]

The last equation is easy to solve recursively because the matrix R is upper-
diagonal. The work is dominated by the first step and requires approxi-
mately 2mn2 − 2

3n
3 flops which is worse than the Cholesky factorization

method if m is large. Apparently, however, this method behaves better
with respect to accumulation of numerical errors. Its another advantage is
that there is a variant of QR factorization algorithm adapted for sparse ma-
trices (that is, the matrices that have large number of zero entries). Since
the sparseness is lost in computation of A∗A, the QR algorithm can have an
advantage in speed in these cases.
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Example 5.2.1. Let

A =

1, 0
0, 1
1, 0


What is the orthogonal projector P onto Range(A) and what is the image

under P of the vector v = [1, 2, 3]∗?
Solution:

A∗A =

[
2, 0
0, 1

]
, (A∗A)−1 =

[
1/2, 0
0, 1

]
, (A∗A)−1A∗ =

[
1/2 0 1/2
0 1 0

]
,

P = A(A∗A)−1A∗ =

1/2 0 1/2
0 1 0

1/2 0 1/2

 .

So,

P [1, 2, 3]∗ = [2, 2, 2]∗.

Note that if one wants only to calculate Pv with v = [1, 2, 3]∗ , then one
does not need to calculate (A∗A)−1. One can simply calculate sequentially
u = A∗v, then solve the system A∗Ax = u and finally calculate Ax.
Example 5.2.2. Projection on a plane.
Example 5.2.3. Curve fitting.

There are some generalizations of the linear regression when one puts
different weights on different observations. In this case we can introduce a
weighted 2-norm:

∥x∥2,w =

√√√√ n∑
i=1

wix2i ,

where wi are some positive weights. In this case one wants to minimize

∥y −Xβ∥22,w,

and this leads to the formulas

β̂ = (X∗WX)−1X∗Wy,

ŷ = X(X∗WX)−1X∗Wy,
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where W is the diagonal matrix with weights wi on the main diagonal.
The prediction matrix X(X∗WX)−1X∗W is a projector, but it is not

symmetric so this projection is not orthogonal. However, it turns out that
it can be thought as orthogonal if we define the orthogonality differently,
namely if we say that two vectors u and v are orthogonal if

∑n
i=1wiuivi = 0.

Other generalizations of the linear regression are related to the choice
of other vector norms. However, they not always result in prediction being
given by a linear projection.

Recently, there was a lot of interest in the statistical community in the
case when the number of explanatory variables n exceeds the number of
observations m. In this case, the n × n matrix X∗X is not invertible and
we cannot solve the normal equations.

A popular approach is to change a minimization target. Instead of min-
imizing the norm of the error term ∥y −Xβ∥, one minimizes a “regularized
loss function”, which is either

∥y −Xβ∥2 + λ∥β∥22, or ∥y −Xβ∥2 + λ∥β∥1,

where λ is a regularization parameter, ∥β∥2 and ∥β∥1are the 2-norm and
1-norm of the parameter vector ∥β∥, respectively. These two methods are
called the ridge regression and the lasso regression, respectively.

The ridge regression leads to the solution

β̂ = (X∗X + λIn)
−1X∗Y.

Note that this is not a projection matrix.
The solution of the lasso regression formula cannot be given by a simple

formula but there are efficient algorithms for its calculation.
The lasso regression became recently especially popular since it often

results in a vector β which has a lot of zeros as its components.

5.3 Exercises
Exercise 5.3.1. If P is an orthogonal projector, then the matrix I−2P is or-
thogonal. Prove this algebraically, and try to give a geometric interpretation
for the transformation represented by matrix I − 2P .
Exercise 5.3.2. Let E be the m ×m matrix that extracts the even part of
an m-vector: Ex = (x + Fx)/2, where F is the m × m matrix that flips
(x1, . . . , xm)∗ to (xm, . . . , x1)

∗. Is E an orthogonal projector, an oblique
projector, or not a projector at all? What are its entries?
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Exercise 5.3.3. Given an m × n matrix A with m ≥ n, show that A∗A is
non-singular if and only if A has full rank.
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Chapter 6

Determinants

Reading for this Chapter

• Strang: Chapter 4.

6.1 Definitions
Consider an n×n matrix A with columns a1, . . . ,an. We might be interested
in the volume of the parallelepiped (or, in simpler terms, the box) spanned
by vectors a1, . . . ,an.

However, one difficulty is that this function is somewhat complicated. if
we call this function vol(a1, . . . ,an), then the equality

vol(a1 + a′
1, . . . ,an) = vol(a1, . . . ,an) + vol(a′

1, . . . ,an) (6.1)

sometimes holds and sometimes not: for example, volume on the left is zero
if a′

1 = −a1 and the volumes on the right are (almost always) positive.
For this and other reasons, it is useful to define the signed volume of the

parallelepiped. The absolute value of the signed volume equals the regular
volume and its sign is determined by the orientation of the system of vectors
a1, . . . ,an. We will not define the orientation rigorously but only note that it
can be either positive or negative, and the orientation preserved by rotations
but changes sign after a reflection.

We denote this signed volume by Vol(a1, . . . ,an). In particular Vol(v1, v2) =
−Vol(v2, v1) and Vol(−v1, v2) = −Vol(v1, v2).

The geometric definition of the determinant of matrix A is that

det(A) = Vol(a1, . . . ,an).
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This definition is a bit unsatisfactory since it depends on the definitions of
volume and orientation and so it is not purely algebraic. It also does not
explain how to compute the determinant.

The second definition is axiomatic. The determinant is a function that
maps matrix A = [a1, . . . , an] to real numbers and satisfies the following
axioms:

1. For all real numbers c ∈ R,

det[ca1, . . . ,an] = c det[a1, . . . ,an], (6.2)

(More generally, this identity should hold for all c from the field over
which we define the matrices.)

2.

det[a1 + a′
1, . . . ,an] = det[a1, . . . ,an] + det[a′

1, . . . ,an], (6.3)

3. For every 1 ≤ i < j ≤ n, we have

det[a1, . . . ,ai, . . . ,aj , . . . ,an] = − det[a1, . . . ,aj , . . . ,ai, . . . ,an].
(6.4)

4. For the basis vectors e1 = (1, 0, 0 . . . , 0), e2 = (0, 1, 0, . . . , 0), …, en =
(0, 0, 0, . . . 1), we have

det[e1, e2, . . . , en] = 1 (6.5)

This is a nice definition but it is not clear why this function exists. (The
signed volume satisfies these axioms but our goal is to avoid using the signed
volume in the definition.)

We are going to show the existence of the determinant by writing the
function det(A) explicitly in terms of the entries of A and checking that it
satisfies the axioms. Unfortunately, this definition is somewhat cumbersome.

Figure 6.1: Area of a parallelogram
in R2

It can perhaps be guessed by con-
sidering examples in 2-dimensional and
3-dimensional space. For example, if
we have two vectors v1 = (a, b) and
v2 = (c, d) then one can show that the
area of the corresponding parallelogram
is |ad− bc|. One can also develop a for-
mula for the volume of 3-dimensional

43



parallelepiped. From this, one can guess
the general definition.

Here is the constructive definition of
the determinant:

det(A) =
∑
π∈Sn

ε(π)a1π(1)a2π(2) . . . anπ(n).

(6.6)
Here the sum is over all permutations of the set {1, 2, . . . , n}. A permutation
is the bijective mapping of this set to itself. For example, we can define a
permutation of the set {1, 2, 3, 4} by setting π(1) = 3, π(2) = 4, π(3) =
2, π(4) = 1. This permutation can also be written in two-line notation:

π =
1 2 3 4
3 4 2 1

or simply in one-line notation 3421 (since the first line is always the same).
For each permutation, we can define its length l(π) as the minimal number
of switches of two elements which is needed to bring it to the identical
transformation. For example for our transformation π = 3421, we can undo
it as follows:

3421
31−→ 1423

42−→ 1243
43−→ 1234,

so the length of this permutation is three.
Then we define the function ε(π) := (−1)l(π), and now our formula (6.6)

is well-defined.
For example, for a 2×2 matrix A we have only two permutations 12 and

21 with lengths 0 and 1 respectively, and the formula for the determinant is

det(A) = a11a22 − a12a21,

with the first term corresponding to the identity permutation 12 and the
second to the permutation 21.

If n = 3, we have one permutation of length 0: 123, three permutations
of length 1: 213, 132, and 321, and two permutations of length 2: 231 and
312. So the formula for the determinant in this case is

det(A) = a11a22a33 + a12a23a31 + a13a21a32

− a12a21a33 − a11a23a32 − a13a22a31.

The number of terms in these formulas grows very fast so they are not
useful for the actual computation of the determinants except for small ma-
trices.
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The terms in the definition of the determinant can be re-organized to
give the recursive formula for the determinant in terms of the determinants
of sub-matrices.

This is called the cofactor expansion of the determinant.
Let A be an n× n matrix with entries aij . Let A(ij) be a matrix which

is obtained by removing row i and column j. Then the cofactor

Cij := (−1)i+j det
(
A(ij)

)
.

The cofactor expansion along the row i is the formula

det(A) =
n∑

j=1

aijCij .

For example, for the first row, we have the expansion:

det(A) = a11C11 + a12C12 + . . .+ a1nC1n

= a11 det
(
A(11)

)
− a12 det

(
A(12)

)
+ . . .+ (−1)n+1a1n det

(
A(1n)

)
We have also an analogous expansion along column j:

det(A) =
n∑

i=1

aijCij .

(So altogether, there are 2n different expansions, n along the rows and n
along the columns.)

This result can be proved from the basic definition (6.6). In a sense,
this is simply a way to organize formula (6.6) as a recursive calculation. We
omit the proof.

The cofactor expansion can be used to calculate the determinant recur-
sively but for large matrices this is usually much slower than by reducing
the matrix to the upper-diagonal form, the method which we describe a bit
later.

6.2 Properties of the determinant
One case in which it is easy to calculate the determinant from the definition
(6.6) or from a cofactor expansion is the case in which the matrix is either
lower diagonal or upper-diagonal. In this case, it is easy to see that the only
non-zero term in the sum in formula (6.6) is the term corresponding to the
identity permutation π = 12 . . . n. This leads to the following theorem.
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Theorem 6.2.1. If a square matrix A is upper-diagonal, or lower-diagonal,
then

detA = a11a22 . . . ann.

Formula (6.6) is also very useful from the theoretical point of view. First
of all, it is possible to show that the determinant defined in this way actually
satisfies the axioms listed above. So, the determinant which we defined
axiomatically actually exists.

Second, this definition allows us to prove an important theorem.

Theorem 6.2.2. For every square matrix A, we have:

det(At) = det(A).

(Note that we use here the transposition sign t instead of ∗. Even if
the matrix is complex, we should use the transposition, not the conjugate
transposition so that the theorem holds true.)

Proof. For the transposed matrix At, we have

det(At) =
∑
π∈Sn

ε(π)aπ(1)1aπ(2)2 . . . aπ(n)n

=
∑
π∈Sn

ε(π)a1π−1(1)a2π−1(2) . . . anπ−1(n),

where π−1 is the inverse permutation to the permutation π. For example, if

π =

[
1 2 3
3 1 2

]
, then π−1 =

[
3 1 2
1 2 3

]
=

[
1 2 3
2 3 1

]
.

It turns out that the length of the inverse permutation π−1 equals the
length of permutation π. (If we can undo the permutation π by some se-
quence of transpositions then we can undo π−1 by a related sequence of
transpositions that has the same length.) Hence ε(π−1) = ε(π) and we can
continue the formula above as:

det(At) =
∑
π∈Sn

ε(π−1)a1π−1(1)a2π−1(2) . . . anπ−1(n).

However if π in this sum are all possible permutations of the set {1, . . . , n},
then π−1 also run over all possible permutations of this set. So it is actually
the same sum as in definition of det(A) and we conclude that det(At) =
det(A).
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In particular, this implies that properties (6.2) - (6.4) hold not only for
matrix A with columns a1, . . . , an but also for matrix with rows a1, . . . , an.

Here are useful consequences of these basic properties:

Theorem 6.2.3. 1. If one row in the matrix is a multiple of another row
then the determinant equals 0.

2. If we add a multiple of row ai to any other row aj then the determinant
will not change.

Proof. For the proof of the first property, without loss of generality let the
second row be a multiple of the first row, then

det([a1; ca1; . . .]) = c det([a1; a1; . . .]) = −c det([a1; a1; . . .]),

where in the last equality we exchanged rows 1 and 2 and used the property
(6.4). This implies that the determinant is zero.

For the proof of the second property, again without loss of generality,
assume that we added a multiple of the first row to the second row. Then
we have:

det([a1; a2 + ca1; . . .]) = det([a1; a2; . . .]) + det([a1; ca1; . . .])
= det([a1; a2; . . .]),

which is what we wanted to prove. (The first equality uses property (6.3)
and the second one uses the property that we just proved.)

In particular, this theorem means that if we do Gaussian elimination
on matrix A (by adding the multiples of rows above to the rows below but
without multiplying the rows by a constant, and without exchanging the
rows), then the determinant of the matrix will not change and eventually we
will be left with an upper-diagonal matrix U that have the same determinant
as the original matrix. Hence, by Theorem 6.2.1 the determinant of A equals
the product of the diagonal elements of U .

If we had to exchange the rows, then a more general formula applies:

det(A) = (−1)ru11u22 . . . unn, (6.7)

where r is the number of times we exchanged the rows, and u11, …, unn are
the pivots, that is the diagonal elements of U .

This property gives an effective method to calculate the determinants.
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Example 6.2.4. Calculate the determinant of

A =

 1 −4 2
−2 8 −9
−1 7 0


in two different ways, by using the cofactor expansion and the Gaussian
elimination.

By using the cofactor expansion over the first row, we get:

det(A) = 1× det
[
8 −9
7 0

]
− (−4)× det

[
−2 −9
−1 0

]
+ 2× det

[
−2 8
−1 7

]
= 63− 36− 12 = 15.

By raw reduction, we find 1 −4 2
−2 8 −9
−1 7 0

 ∼

1 −4 2
0 0 −5
0 3 2

 ∼

1 −4 2
0 3 2
0 0 −5

 ,

where we used one exchange of rows. Consequently,

det(A) = (−1)1 × 1× 3× (−5) = 15.

For large matrices, the method that uses Gaussian elimination is much
more effective than the cofactor expansion method.
Example 6.2.5 (The Vandermonde determinant). One important determi-
nant which pop-ups in many parts of mathematics is the Vandermonde de-
terminant:

det(W ) = det


xn−1
1 xn−1

2 . . . xn−1
n

xn−2
1 xn−2

2 . . . xn−2
n

· · · · · · · · · · · ·
x1 x2 . . . xn
1 1 . . . 1


By the definition, this should be a polynomial of variables x1, x2, . . . , xn
and that every term in this polynomial has the same total degree. It is
clear that the determinant equal to zero if xi = xj for some i ̸= j. So, the
polynomial should be divisible by all of the differences xi − xj . By checking
the total degree, it follows that the polynomial is equal to the product of
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these differences up to the constant term and the by looking on a specific
term like xn−1

1 xn−2
2 . . . xn−1 one can find this constant. This results in the

following formula:

det(W ) =
∏
i<j

(xi − xj).

The formula 6.7 for determinant in terms of pivots implies the following
important property of the determinants.

Theorem 6.2.6. A square matrix A is invertible if and only if det(A) ̸= 0.

Proof. The matrix A is invertible if and only if it has full rank, hence, if
and only if after raw reduction all the variables uii are valid pivots, that is,
uii ̸= 0, hence, by formula (6.7) if and only if det(A) ̸= 0.

Another important result is that determinant multiplicative.

Theorem 6.2.7. Let A and B be two n× n matrices, then

detAB = detAdetB.

Sketch of the proof. The argument has two cases. The first case is when
one of the matrices A and B is non-invertible (has a non-zero null-space).
Then it is easy to check that AB is also non-invertible and we are done by
Theorem 6.2.6.

The second case is when A and B are both invertible. Say, A is invertible.
Then we can reduce the matrix A by elementary row operations to the
identity matrix. (This is the process by which we obtain the reduced row
echelon form. In this case this form is the identity matrix because A is
invertible). We can reverse the process and write A as a product of matrices
corresponding to elementary transformations:

A = EsEs−1 . . . E1.

Then we check that the claim of the Theorem holds for the case when we
multiply B by an elementary matrix. That is, if E is an elementary matrix
and X is an arbitrary n × n matrix, then det(EX) = det(E) det(X). This
holds because of the properties of the determinant in (6.2)–(6.4) and in
Theorem 6.2.3. Then, by induction, we have:

det(A) = det(Es) det(Es−1) . . . det(E1),
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and

det(AB) = det(Es) det(Es−1) . . . det(E1) det(B),

which implies that det(AB) = det(A) det(B).

The unpleasant part about this proof is that it depends very much on
the fact that A is a finite matrix. The determinants can be generalized
to some linear transformations in infinite-dimensional spaces by requiring
that the axioms are satisfied and checking the existence and uniqueness
properties. This proof will not work for these generalizations. Alternatively,
one can define a certain function of matrix A as det(AB)/ det(B) (where
B is considered a fixed non-singular matrix) and check that it satisfies all
axioms. Then by uniqueness, one can conclude that this function equal the
determinant of A.

Corollary 6.2.8. For a non-singular square matrix A, we have:

det(A−1) =
1

det(A)

Corollary 6.2.9. Suppose n × n matrix V has columns v1, . . . , vn, and let
A be another n× n matrix. Then

Vol(Av1, Av2, . . . , Avn) = det(A)Vol(v1, v2, . . . vn).

Proof. Since Av1, Av2, . . . , Avn are columns of the matrix AV , we have

Vol(Av1, Av2, . . . , Avn) = det(AV ) = det(A) det(V )

= det(A)Vol(v1, v2, . . . vn).

In other words, suppose we have a box with the sides given by vectors
v1, v2, . . . , vn and suppose this box has the oriented volume V , and we apply
a linear transformation A to this box. Then this box will be mapped to a
box with the oriented volume det(A)V . This gives another interpretation
of the determinant: it is a scale factor by which a linear transformation A
extends the volume elements.
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6.3 Inverse matrix and Cramer formula
A formula for inverse matrix.

Recall that cofactors are defined as

Cij := (−1)i+j det
(
A(ij)

)
.

We can think about them as entries of a matrix C. Recall also that the
(row) cofactor expansion along the row i is the formula

det(A) =
n∑

j=1

aijCij .

Another use of cofactors is that they provide us with a formula for the
inverse matrix.

Theorem 6.3.1. Let A be a non-singular n× n matrix. Then

A−1 =
1

det(A)
Ct,

meaning that

(A−1)ij =
1

det(A)
Cji.

Sketch of the proof: We need to prove that

ACt = det(A)I,

that is, that
n∑

j=1

aijCkj = det(A)δik.

For k = i this is simply the cofactor expansion, while for k ̸= i, the left-
hand side is the cofactor expansion for the determinant of the matrix which
is obtained from matrix A by replacing the row k with the row i (and keeping
all other rows intact). However, this new matrix has two identical rows and
therefore its determinant is 0.

The formula is important theoretically. However, in numerical computa-
tions, the inverse is easier to find by using the Gaussian elimination method.
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Example 6.3.2. The inversion formula for 2× 2 matrix:

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
Example 6.3.3. If a matrix A has integer entries and detA = 1, then its
inverse is also an integer matrix.

A related result is Cramer’s formula for the solution of linear equations.

Theorem 6.3.4. For an invertible matrix A, the k-th entry of the solution
of the equation Ax = b is given by the formula

xk =
detBk

detA ,

where the matrix Bk is obtained from A by replacing column number k of A
by the vector b.

Sketch of the proof: The solution is

x = A−1b =
1

detACtb,

so

xk =
1

detA

n∑
i=1

Cikbi,

and one can identify the sum as the cofactor expansion for the determinant
of the matrix Bk along the column k.

Again, from the practical point of view, this formula is not very useful
for calculations. However, from the theoretical viewpoint, it means that the
solution of any system of equations can be written in terms of determinants.

6.4 Advanced properties of determinant
The theory of determinants have some beautiful identities. Here are several
of them, which we give without proof.

Determinant of a block-diagonal matrix. Suppose A and D are square
k × k and l × l matrices respectively, and let B is a k × l matrix. Then we
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can form a block matrix
[
A B
0 D

]
which is a square (k+ l)× (k+ l) matrix.

(Here 0 denotes a l × k matrix of zeros.) Then

det
[
A B
0 D

]
= det(A) det(D).

Schur’s identity is a generalization of this formula. Suppose A is square

and invertible and B, C and D are such that the matrix
[
A B
C D

]
is square,

then

det
[
A B
C D

]
= det(A) det(D − CA−1B)

Silvester’s determinantal identity. Let A and B be m × n and n × m
matrices, respectively. Then

det(Im +AB) = det(In +BA)

The Cauchy - Binet formula. The Cauchy-Binet formula allows one to
calculate the determinant of AB if A and B are not square. So, it is a
generalization of the product formula for the determinant. Suppose A is
m×n and B is n×m and assume that m ≤ n (otherwise, it is easy to show
that det(AB) = 0. Then one has the formula:

det(AB) =
∑
S

det(A(:, S)) det(B(S, :))

where the sum is over all m-element subsets S of the set {1, . . . , n}, A(:, S)
is an m × m matrix whose columns are the columns of A at indices from
S, and B(S, :) is an m×m matrix whose rows are the rows of A at indices
from S.

6.5 Exercises
Exercise 6.5.1. Use a determinant to identify all values of t and k such that
the following matrix is singular. Assume that h and k must be real numbers.

A =

 0 1 t
−3 10 0
0 5 k


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Exercise 6.5.2. Let A = [a, b, c,d] be a 4 × 4 matrix whose determinant is
equal to 2. What is the determinant of B = [d, b, 3c,a+ b]? Explain.
Exercise 6.5.3. By applying row operations to produce an upper triangular
U , compute the following determinants:

1.

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


2.

A =


1 t t2 t3

t 1 t t2

t2 t 1 t
t3 t2 t 1


Exercise 6.5.4. True or false, with reason if true and counterexample if false:

1. If A and B are identical except that b11 = 2a11, then det(B) =
2det(A).

2. The determinant is the product of the pivots.

3. If A is invertible and B is singular, then A+B is invertible.

4. If A is invertible and B is singular, then AB is singular.

5. The determinant of AB −BA is zero.

Exercise 6.5.5. Find the determinant of an n × n matrix A = I + J where
I is the identity matrix and J is a matrix with all entries equal to 1.
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Chapter 7

Eigenvalues and eigenvectors

Reading for this Chapter

• Strang: Chapter 5.

• Trefethen-Bau: Lecture 24

7.1 Definition and relation to characteristic poly-
nomial

The main goal of the theory of eigenvalues and eigenvectors is to determine
a basis in which the matrix of a transformation has the simplest possible
form.

For this theory, some knowledge of complex numbers is unavoidable.
Some basics are summarized in appendix.

7.1.1 Eigenvalue diagonalization
A non-zero vector x ∈ Cm is an eigenvector of an m×m matrix A if Ax = λx
and then λ is its corresponding eigenvalue. The set of all eigenvalues of a
matrix A is called the spectrum of the matrix A. It is a subset of the plane
of complex numbers.

Can the spectrum be empty? The answer is “no” as we will see a bit
later.

Now, if λ is an eigenvalue, then the corresponding eigenvectors form
a linear space, which is called an eigenspace. We denote it by Eλ. The
dimension of this eigenspace is called the geometric multiplicity of λ.
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Given that we know an eigenvalue λ of A, it is easy to calculate the
corresponding eigenspace. It is simply the null-space of matrix A−λI. The
calculation of eigenvalues is more involved. We will discuss methods for
doing that later.

The importance of eigenvectors and eigenvalues stems from the following
observation. Suppose that we have a basis x1, . . . ,xn of Cm that consists
from eigenvectors of matrix A. Then we have

A

 | | . . . |
x1 x2 . . . xn

| | . . . |

 =

 | | . . . |
λ1x1 λ2x2 . . . λnxn

| | . . . |


=

 | | . . . |
x1 x2 . . . xn

| | . . . |

λ1 0 . . . 0
0 λ2 . . . 0
0 0 . . . λn

 ,

or

AX = XΛ,

where X is the matrix with columns x1, …, xn, and Λ is the diagonal matrix
with diagonal entries equal to eigenvalues λ1, . . . , λn. Since x1, . . . , xn is a
basis, the matrix X is full rank and therefore, it is invertible. So,

A = XΛX−1,

This factorization of matrix A is called the eigenvalue diagonalization of
matrix A.

Intuitively, in the basis of eigenvectors, the linear transformation A looks
as a stretch in the directions given by eigenvectors by factors given by the
eigenvalues.

Of course, a rotation is difficult to imagine like a stretch transformation.
Indeed, the eigenvalue diagonalization is impossible over the real numbers,
since there are no real eigenvectors. However, it is still possible over the
complex numbers.

Still, even over complex numbers, the diagonalization can be impossible
if there are not enough eigenvectors to form a basis. One case, when it is
always possible is when there are n distinct eigenvalues λ1, . . . , λn. In this
case, it is possible to show that the corresponding n eigenvectors are linearly
independent and so form a basis.

More generally, the basis exists if the sum of geometric multiplicities of
eigenvalues of A is n.

Now, how can we calculate the eigenvalues and their geometric multi-
plicities?
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7.1.2 Characteristic polynomial
Definition 7.1.1. The characteristic polynomial of A is the polynomial

pA(z) = det(zI −A).

(Remark: sometimes the characteristic polynomial is defined as det(A−
zI), which is different from our definition by the sign if the size of them
matrix n is odd.)

A very important theorem connects eigenvalues and the characteristic
polynomial.

Theorem 7.1.2. A number λ is an eigenvalue of A if and only if pA(λ) = 0.

Proof. Indeed, λ is an eigenvalue if and only if there is a non-zero vector x
(its corresponding eigenvector), such that (λI − A)x = 0. This happens if
and only if the square matrix λI −A is singular (that is, if it is invertible).
And here we can use a property of the determinant that the singularity of
matrix λI −A is equivalent to det(λI −A) = 0 (Theorem 6.2.6).

Example 7.1.3. Find the characteristic polynomial, eigenvalues and eigen-
vectors of the following matrices:[

1 2
8 1

]
,

[
1 2
−2 1

]
.

Answers: For the first example: p(z) = (z−1)2−16, λ1,2 = −3, 5, x1 = [1, 2]t,
x2 = [1,−2]t.

For the second example : p(z) = (z − 1)2 + 4, λ1,2 = 1± 2i, x1 = [1, i]t,
x2 = [1,−i]t.
Example 7.1.4 (Rotation matrix). What are eigenvalues of matrix

Rθ =

[
cos θ sin θ
− sin θ cos θ

]
?

Example 7.1.5 (Orthogonal matrices). What can be said about eigenvalues
of orthogonal (or unitary) matrices?

Orthogonal matrices preserve the norm of vectors, so it is easy to see
that all their eigenvalues must have absolute value 1.
Example 7.1.6 (Projections). What can be said about eigenvalues and eigenspaces
of the projection matrices?

For projection matrices, all eigenvalues are either 0 or 1 and the corre-
sponding eigenspaces are the nullspace and the range of the matrix.

57



Theorem 7.1.2 implies that every matrix has at least one eigenvalue and
so its spectrum is not empty. This is a consequence of the fundamental
theorem of algebra that says that every polynomial which is not identically
constant has at least one root, which might be a complex number.

Moreover, the characteristic polynomial pA(z) of an m×m matrix A has
degree m and the fundamental theorem of algebra gives us some additional
information. Namely, we can write pA in the form

pA(z) = (z − λ1)(z − λ2) . . . (z − λm),

where λi are eigenvalues of A. The number of times a given eigenvalue
λj appears in this product is called the algebraic multiplicity of λj . An
eigenvalue is called simple if its algebraic multiplicity is 1.

In particular, we see that the number of distinct eigenvalues is between
1 and m. If all roots of pA(z) are simple, then A has m distinct eigenvalues
and, as we prove later, the matrix A is diagonalizable. (This is the generic
situation. If all entries of A are real numbers chosen at random from a con-
tinuous distribution, then with probability 1 the roots of pA(z) are simple.
If the entries are not real but say integer, and the matrix A is large then
the probability that a root is not simple is not zero but very small.)

Now how do geometric and algebraic multiplicities are related?
Example 7.1.7. Here is an example that the geometric and algebraic multi-
plicities of an eigenvalue can be different. Consider matrices

A =

2 2
2

 and B =

2 1
2 1

2


The characteristic polynomial for both matrices is p(z) = (z − 2)3, so the
only eigenvalue is λ = 2 and it has the algebraic multiplicity 3 for both
matrices. However it is easy to check that the eigenspace of λ = 2 is the
whole space R3 in case of matrix A, and the line spanned by the vector
e1 = (1, 0, 0) in case of matrix B.

It is possible to show that the algebraic multiplicity is never smaller
than the geometric multiplicity. (See Theorem 7.2.2 below.) We say that an
eigenvalue is defective if its algebraic multiplicity is greater than its geometric
multiplicity. A matrix is defective if it has one or more defective eigenvalues.
It turns out that a matrix is diagonalizable if and only if it is not defective.
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7.2 Change of basis and similarity of matrices
Suppose that a linear transformation L has matrix A in the standard basis.
Now we consider another basis x1, . . . , xn and want to know what is the
matrix of L in the new basis. To understand this, let X = [x1, . . . , xn] be
a matrix whose columns are x1, . . . , xn and let a vector v has coordinates
b1, b2 . . . bn in the new basis. That means that v = b1x1 + . . . bnxn, so its
coordinates in the standard basis are the entries of the vector Xb. This
vector will go to AXb under transformation L. The entries of this vector
are still coordinates in the standard basis, so in order to re-write it in the
new basis, we apply the inverse transformation and get X−1AXb.

The result: the matrix of the linear transformation L in the basis x1, . . . , xn
equals X−1AX.

For a non-singular matrix X, matrices A and X−1AX are called simi-
lar. Intuitively, they can be thought as representations of the same linear
transformation in two different bases, with the basis transformation given
by X.

Theorem 7.2.1. If X is non-singular, then A and X−1AX have the same
characteristic polynomial, eigenvalues, and algebraic and geometric multi-
plicities.

In particular we see that all of these quantities are properties of the linear
transformation represented by A rather than of the matrix itself. They
remain the same in every basis.

Proof. First we show that the characteristic polynomials are the same, by
using properties of the determinant:

pX−1AX(z) = det
(
zI −X−1AX

)
= det

(
X−1(zI −A)X

)
= det

(
X−1) det(zI −A) det

(
X
)

= det(zI −A) = pA(z).

The agreement of the characteristic polynomials implies that the eigenvalues
and its algebraic multiplicities are the same for A and X−1AX.

In order to show that the geometric multiplicities agree, it is easy to check
that if Eλ is an eigenspace for A, then X−1Eλ is an eigenspace for X−1AX
corresponding to eigenvalue λ, and conversely. In addition, these subspaces
are bijectively mapped on each other so they have the same dimension.

Theorem 7.2.2. The algebraic multiplicity of an eigenvalue λ is at least as
great as its geometric multiplicity.
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Proof. Let n be the geometric multiplicity of λ for matrix A, and let V̂ be
an m× n matrix with the columns that form an orthonormal basis for Eλ.
Then AV̂ = λV̂ . (This simply says that every column of V̂ is in Eλ so
the multiplication by A acts as a multiplication by the eigenvalue λ on this
column.)

Let us extend V̂ to a square unitary matrix V . Then it is easy to check
that

B = V ∗AV =

[
λIn×n C

0 D

]
,

where C is n× (m− n) and D is (m− n)× (m− n). Note that B is similar
to A. We calculate by using the definition of the determinant:

det(zI −B) = det(zI − λI) det(zI −D)

= (z − λ)n det(zI −D).

Therefore the algebraic multiplicity of λ as eigenvalue of B is at least n. Since
A is similar to B, it has the same algebraic multiplicity for λ, and so the
algebraic multiplicity of λ in A is no less than n, its geometric multiplicity.

7.3 More on diagonalizability
Recall that the matrix A is diagonalizable if and only if it can be written
as XΛX−1 where Λ is a diagonal matrix. When a matrix is diagonalizable?
In principle, the answer is given by the following theorem.

Theorem 7.3.1. An m ×m matrix A is diagonalizable if and only if it is
non-defective.

That is, when we say that a matrix is diagonalizable or that a matrix is
non-defective, we describe the same property of matrices.

Sketch of the proof of Theorem 7.3.1. If matrix A is diagonalizable then A =
XΛX−1, so it is similar to a diagonal matrix Λ and hence has same eigen-
values with same multiplicities. It is easy to check that a diagonal matrix is
non-defective, so Λ is non-defective and the same holds for A.

In the converse direction, assume that the matrix A is non-defective.
Then the dimension of each eigenspace equals to the algebraic multiplicity
of the corresponding eigenvalue. Hence the sum of the dimensions of these
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eigenspaces equal to m. If we choose a basis in each of these eigenspaces, and
combine the bases together then we obtain the set of m linearly independent
eigenvectors [This is the place where a more accurate argument is needed.]
If these m independent eigenvectors are formed into the columns of a matrix
X, then X is nonsingular and we have A = XΛX−1.

However, it might be not easy to check if an eigenvalue is defective. A
simpler sufficient condition for diagonalizability is that all eigenvalues are
distinct.

Theorem 7.3.2. If all eigenvalues of matrix A are distinct then A is diag-
onalizable.

Proof. It is enough to show that the set of eigenvectors x1, . . . xn corre-
sponding to the eigenvalues λ1, . . . λn is linearly independent. Suppose not.
Moreover, let us choose a set of eigenvectors such that they are linearly
dependent but any proper subset of them is not linearly dependent. With-
out loss of generality, we can assume that this is the set {x1, . . . , xk} where
k ≤ n. Note that k ≥ 2 because x1 ̸= 0 so the set that consists of one
eigenvector is not linearly dependent. Without loss of generality, we can
rename the eigenvectors so that

x1 =

n∑
i=2

cixi,

and not all ci = 0 because an eigenvector x1 ̸= 0. Then Ax1 =
∑n

i=2 ciAxi,
which means that

λ1x1 =
n∑

i=2

ciλixi

If we multiply the first equation by λ1 and subtract it from the second
equation, then we get

0 =

n∑
i=2

ci(λi − λ1)xi

Since λi ̸= λ1 we see that not all coefficients in this sum are zero. There-
fore, the set of vectors {x2, . . . , xk} is linearly dependent, contrary to our
assumption about the minimality of the set {x1, x2, . . . , xk}. This contra-
diction shows that {x1, . . . , xn} is linearly independent and therefore we can
diagonalize matrix A.
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What happens if a matrix is non-diagonalizable? In this case it is possible
to show that there is a matrix X such that X−1AX has a Jordan form. In
this form the matrix is block-diagonal and every block has the form

B =


λ 1

λ 1
. . . . . . . . . . . .

λ 1
λ


(The block can be 1× 1 with only λ inside it.)

7.4 The determinant and trace of A and eigenval-
ues

Theorem 7.4.1. The determinant and the trace of a matrix A are equal to
the product and the sum of the eigenvalues of A, respectively, counted with
their algebraic multiplicities.
Proof. We have already proved the statement about the determinant for
diagonalizable matrices in a previous lecture. In general, we set z = 0 in the
definition of the characteristic polynomial and obtain the required formula.

For the trace recall that the trace equals to the sum of diagonal elements
of the matrix. From the definition of the determinant we see that in the
expansion of det(zI−A) in powers of z the coefficient before zm−1 is − tr(A).
(Indeed, in order to ensure that we have m − 1 variables z in one of the
determinant products, we need to take z from every diagonal element of the
matrix zI −A except one. This forces the last choice to be a −aii from the
remaining diagonal element. After summing over i, we obtain − trA.) On
the other hand expanding (z − λ1) . . . (z − λm), we find that this coefficient
is −

∑m
i=1 λi. This completes the proof.

7.5 Functions of matrices
If a matrix is not defective, then we have enough linearly independent eigen-
vectors x1, . . . , xn to build a full-rank square matrix X = [x1, x2, . . . , xn].
Then we have the diagonalization formula:

A = XΛX−1,
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where Λ is the diagonal matrix with the eigenvalues on the main diagonal.
This formula can be useful to compute functions of matrix A. For ex-

ample if we want to calculate the k-th power of matrix A, Ak, then this
formula gives us:

Ak = XΛkX−1 = X

λk
1 0 . . . 0
0 λk

2 . . . 0
0 0 . . . λk

n

X−1

Similarly, if we have a polynomial p(z) =
∑K

k=0 ckz
k, then

p(A) :=
K∑
k=0

ckA
k = Xp(Λ)X−1 = X

p(λ1) 0 . . . 0
0 p(λ2) . . . 0
0 0 . . . p(λn)

X−1

More generally, this formula is valid for convergent power series and for all
functions that can be written as convergent power series. For example,

eA :=
K∑
k=0

1

k!
Ak = XeΛX−1 = X

eλ1 0 . . . 0
0 eλ2 . . . 0
0 0 . . . eλn

X−1

Example 7.5.1. Let

A =

[
4 3
1 2

]
Find A2022 by diagonalizing A.

The characteristic polynomial is p(z) = (z − 4)(z − 2) − 3 = z2 − 6z +
5 = (z − 1)(z − 5). So, the eigenvalues are 1 and 5 and the corresponding
eigenvectors are [1,−1]t and [3, 1]t. So the diagonalization is

A = X

[
5 0
0 1

]
X−1,

where

X =

[
3 1
1 −1

]
and X−1 = −1

4

[
−1 −1
−1 3

]
=

1

4

[
1 1
1 −3

]
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It follows that

A2022 =
1

4

[
3 1
1 −1

] [
52022 0
0 1

] [
1 1
1 −3

]
=

1

4

[
3 1
1 −1

] [
52022 52022

1 −3

]
=

1

4

[
3× 52022 + 1 3× 52022 − 3
52022 − 1 52022 + 3

]
≈ 52022

1

4

[
3 3
1 1

]
.

Note that we got a matrix with the columns which are very close to a multiple
of the eigenvector of the largest eigenvalue 5. This observations generalizes
to other matrices (under some condition) and can be used to find the largest
eigenvalue of a matrix. (Or rather, the eigenvalue with the largest absolute
value.)

7.6 Unitary diagonalization; Schur decomposition
So far, we looked at the diagonalization matrices X which are simply invert-
ible. One of the most important properties of Hermitian matrices is that
they are diagonalizable and moreover, they admit a unitary diagonalization:

A = QΛQ∗,

where Λ is diagonal matrix with real entries and Q is a unitary matrix. (If
A is a real symmetric matrix, then Q is an orthogonal matrix.)

In the case when all eigenvalues are different this is easy to prove. First,
let us prove that all eigenvalues are real.

(a) Let λ be an eigenvalue of A with eigenvector x. Then,

(x,Ax) = λx∗x = λ∥x∥2.

At the same time, by using A = A∗,

(x,Ax) = (A∗x, x) = (Ax, x) = (λx)∗x = λ∥x∥2.

Since x is non-zero vector, ∥x∥ ̸= 0, so we find that λ = λ and that means
that λ is real.

Then, let us prove that all eigenvectors are orthogonal.
(b) Let λ1 ̸= λ2 are eigenvalues of A corresponding to eigenvectors x1

and x2, respectively. Then,

(x2, Ax1) = λ1(x2, x1).
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On the other hand,

(x2, Ax1) = (A∗x2, x1) = (Ax2, x1) = λ2(x2, x1).

By using the fact that we proved in (a), λ2 is real: λ2 = λ2, so we can write:

λ1(x2, x1) = λ2(x2, x1),

(λ1 − λ2)(x2, x1) = 0.

Since we assumed λ1 ̸= λ2, hence (x2, x1) = 0 and so the eigenvectors are
orthogonal to each other.

So, if all eigenvalues are different, then we can find a basis that consist
of orthonormal system of eigenvalues. What if they are not? In general, we
can prove the unitary diagonalization of Hermitian matrices by proving the
existence of a so-called Schur factorization of an arbitrary square matrix.

A Schur factorization of a matrix A is a factorization A = QTQ∗, where
Q is unitary and T is upper-triangular.

Theorem 7.6.1. Every matrix A has a Schur factorization.

Remark: Moreover, if matrix A is real and all its eigenvalues are real
then it is possible to choose Q and T to be real in this factorization.

Proof. The proof is by induction on the dimension m of A. Suppose m ≥ 2.
Every matrix A has at least one eigenvalue λ by one of our previous results.
Let x be a unit eigenvector belonging to λ and set it as a first column of a
unitary matrix U . Then, we can check that

U∗AU =

[
λ w∗

0 B

]
.

By inductive hypothesis, there exists a Schur factorization V TV ∗ of B.
Then, we can set

Q = U

[
1 0
0 V

]
,

and check that

Q∗AQ =

[
λ w∗V
0 T

]
,

which is the desired Schur factorization.
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Corollary 7.6.2. If A∗ = A, then A admits unitary diagonalization:

A = QΛQ∗, (7.1)

where Q is unitary and Λ is diagonal with real entries.
Remark: if A is real then by using the remark after the theorem about

the Schur diagonalization, we can show that Q can be chosen real.
The formula (7.1) is often written in the following form:

A =

n∑
i=1

λiqiq
∗
i ,

where λi are eigenvalues of A and {qi} is an orthonormal basis of eigenvec-
tors.

Simultaneous diagonalization Two Hermitian matrices A and B are
called simultaneously diagonalizable if we can find a unitary matrix U such
that

A = UΛAU
∗,

B = UΛBU
∗,

where ΛA and ΛB are the diagonal matrices with eigenvalues of A and B,
respectively, on the main diagonal.
Theorem 7.6.3. Hermitian matrices A and B are simultaneously diago-
nalizable if and only they commute, that is, if AB = BA.
Proof. Let us look at the simple case when all eigenvalues of matrices A and
B are distinct. Suppose x is an eigenvector of A with eigenvalue λ. Then
A(Bx) = BAx = λBx, so Bx is also an eigenvector of A with the same
eigenvalue (or zero). We assumed that all eigenvalues of A are simple, so
Bx must be proportional to x and so x is also an eigenvector of B. This
implies that we can take the matrix of (normalized) eigenvectors of A as U .

The other case, in which eigenvalues can have multiplicity greater than
1, is more complicated and we omit the proof.

Some other classes of matrices also admit unitary diagonalization. The
general criteria is that a square matrix A admits unitary diagonalization if
and only if A∗A = AA∗. Such matrices are called normal. The proof of this
fact follows from the Schur decomposition theorem by checking that for an
upper-triangular matrix T , T ∗T = TT ∗ can hold only if T is diagonal.

One example of normal matrices which are not symmetric are unitary
matrices.
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7.7 Applications
7.7.1 Difference equations
Reading: Section 5.3 in Strang’s book

A one-dimensional difference equation has the form

xn = c1xn−1 + c2xn−2 + . . .+ ckxn−k

Here xn is a sequence of numbers. We are given some initial conditions
xk−1, xk−2 . . . x0 or x0, x−1, . . . , x−(k−1) and look to find what is the behavior
of xn for large n.

This equation can be written as the matrix equation if we introduce
k-vectors x(n) = [xn, xn−1, . . . , xn−k+1]

∗ and matrix

A =


c1 c2 . . . ck
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 1 0


Then we can write the difference equation in the form

x(n) = Ax(n−1). (7.2)

The solution of this equation is x(s) = Asx(0). Hence if we want to know
the behavior of the sequence xn for large n we need to know the behavior
of powers of the matrix As.

If we can diagonalize the matrix A then we have

A = XΛX−1,

As = XΛsX−1 (7.3)

If we know both Λ and the matrix of eigenvectors X we can write an explicit
formula for x(n). In fact, we often don’t need to calculate the matrix X
because formula (7.3) implies that we can write the solution as

xn =

k∑
i=1

aiλ
n
i , (7.4)

where λi are eigenvalues of matrix A and ai are some coefficients which can
be calculated from the initial conditions.

67



In addition, this formula often allows us to find the asymptotic behavior
of xn. Suppose λ1 is an eigenvalue of A that has the largest absolute value:
|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λk|. If in addition, we assume that a1 ̸= 0, then
we have xn ∼ a1λ

n
1 . In particular, if |λ1| < 1 then the sequence declines to

zero, and if |λ1| > 1 then the sequence grows unboundedly.
Remark: It can be proved that the characteristic polynomial of A is

pA(z) = zk − c1z
k−1 − . . .− ck−1z − ck, (7.5)

so the eigenvalues of A are roots of this polynomial, and our method is
found to be equivalent to a popular method of solving difference equations.
Namely, solve the characteristic equation (7.5) and then find the coefficients
in (7.4) from the initial conditions.

Many other dynamic problems in biology, engineering and physics can
be cast in the form (7.2) with x(k) that describe the state of a system at time
k, and A that describe the evolution of the state. In this case, the stability
of the system depends on the size of the eigenvalue with the largest absolute
value.
Example 7.7.1 (Fibonacci numbers). A classic example for this concept is
the Fibonacci numbers, which are defined by the relation:

Fn = Fn−1 + Fn−2.

and the initial condition F1 = F2 = 1. Then we can define vector fn =
(Fn+1, Fn)

t, with f0 = (1, 0)t, and

A =

[
1 1
1 0

]
=

[
λ1 λ2

1 1

] [
λ1 0
0 λ2

] [
λ1 λ2

1 1

]−1

,

where λ1 = (1 +
√
5)/2 and λ2 = (1 −

√
5)/2 are eigenvalues of matrix A.

Then,

An =

[
λ1 λ2

1 1

] [
λn
1 0
0 λn

2

] [
λ1 λ2

1 1

]−1

,

One can use this formula to calculate Fn. Alternatively, we can note that
this formula implies that Fn = aλn

1+bλn
2 , where a and b are some coefficients

that do not depend on n. We can find a and b from equations F0 = a + b
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and F1 = aλ1 + bλ2. The advantage of this method is that we do not need
to calculate the matrix of eigenvectors X and the inverse matrix X−1.

After some calculation, we can get:

Fn =
1√
5

(
λn
1 − λn

2

)
.

Since |λ1| > |λ2| we find that

Fn ∼ 1√
5

(1 +√
5

2

)n

For example, F30 = 832, 040 and the right hand side is 832, 040 + 2.4063 ×
10−7.

7.7.2 Linear Differential Equations
See Strang 5.4.

If we have a system of linear differential equations x′(t) = Ax(t), where
x is a vector with k components, when diagonalization of A decouples this
system of equation. We get the formula: x′(t) = SΛS−1x(t), where Λ is the
diagonal matrix with eigenvalues of A on the main diagonal.

Let u(t) = S−1x(t). Each equation in the resulting system has the
form u′i(t) = λiui(t) so its solution is ui(t) = eλitui(0). In vector form:
u(t) = eΛtu(0).

Therefore, the solution of the original system is

x(t) = SeΛtS−1x(0) = eAtx(0).

The order equations of higher order can be solved by a similar approach
by first converting them to a system of equations.

For example, if we have a system:

y′′ = c1y
′ + c2y,

then we can convert it to a system by setting x1(t) = y(t) and x2(t) = y′(t).
Then we have

x′1(t) = x2(t)

x′2(t) = c2x1(t) + c1x2(t),

or in matrix form

x′(t) =

[
0 1
c2 c1

]
x(t)
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It turns out that diagonalization of the matrix A in this case equivalent
to the standard method of solving these equations: find the roots of the
polynomial z2 − c1z − c2 = 0. If the roots are λ1 and λ2 then the general
solution is

y(t) = a1e
λ1t + a2e

λ2t,

and the coefficients a1 and a2 can be found by fitting the initial conditions
y(0) and y(1).

7.7.3 Markov Chains
Transition probabilities

Reading:

• This section relies heavily on the book “Markov Chains” by James
Norris. In particular, Sections 1.1 and 1.7.

• Section 5.3 in Strang’s book

A distribution µ on a finite state space S is a non-zero |S| × 1 vector
with non-negative entries . We call it a probability distribution if the sum of
the vector entries is 1.

The interpretation of the component µx is that it is a probability to find
a random system X in a state x.

A Markov chain is a model that describes how the probability distribu-
tion µ evolves through time. Let us explain this in detail.

Let S be a finite set, and Xn, n ≥ 0, be a sequence of random variables
that take values in the state space S. (We will often identify S with a subset
of integers {1, . . . ,m}.) We interpret Xn as the (random) state of a system
X at time n.

We say that Xn is a discrete-time Markov chain with the initial proba-
bility distribution µ on S, and transition matrix P if

1. P(X0 = x) = µx;

2. P(Xn+1 = xn+1|X0 = x0, . . . , Xn = xn) = Pxn,xn+1 .
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Figure 7.1

This is illustrated
by diagrams in Fig-
ure 7.1.

The transition ma-
trix P is a square
m × m matrix. It
has the properties
that all its entries
are non-negative and
the sum of the en-
tries in every row
equals to 1. Such
matrices are called

stochastic matrices.
Example 7.7.2 (Random walk on a graph). Recall that an (undirected) graph
G = (V,E) is a set of vertices V and a set of edges E, which are simply
unordered pairs of vertices: E ⊂ V ×V /(v1, v2) ∼ (v2, v1). A graph is simple
if there are no multiple edges (edges with the same endpoints) and that
there are no loops, i.e., edges that have the same vertex as both endpoints.
A degree of a vertex v, denoted d(v), is the number of edges which are
incident to v, that is, that have v as one of its endpoints.

Now we can define a Markov chain which is called a simple random walk
on G. The states are vertices and the transition probability Puv = 1/d(u).
The interpretation is that if there is a particle at vertex u, it has equal
probabilities move along each of the edges incident to u.

If we know the initial probability distribution µ0, we can calculate the
distribution at later times of a Markov chain by multiplying the distribution
µ0 by the transition matrix P on the right. Indeed, for every sequence of
states, (x0, . . . , xn), we can calculate the probability that the system will go
through this sequence of states as follows:

P(X0 = x0, . . . , Xn = xn) = µx0Px0,x1Px1,x2 . . . Pxn−1,xn .

In particular if we sum over all x0, . . . xn−1, we will find the marginal distri-
bution of Xn,

P(Xn = xn) = (µPn)xn .

Here Pn is the n-th power of the matrix P , µPn denote the product of vector
µ by matrix Pn, and (µPn)j is the j-th component of this product.
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In particular, if we assume that µ = ex (the initial probability vector is
1 for the state x and zero for all other states), then follows that

P(Xn = y|X0 = x) = (Pn)xy.

That is, the probability that at time n the chain is at the state y conditional
that originally it was at state x is the xy-th entry of the matrix Pn (i.e., the
entry in the row x and column y).

We will often write the conditional probabilities P(A|X0 = x) as Px(A),
so, for example, the previous result is Px(Xn = y) = (Pn)xy.

Figure 7.2

Example 7.7.3. Consider the three-state chain with diagram in Figure 7.2.
The transition matrix is

P =

0 1 0
0 1

2
1
2

1
2 0 1

2

 .

We seek to find a general formula for the probability that a particle that
starts at 1 will be at 1 after n steps.

This means that we want to calculate (Pn)11.
By writing down the characteristic equations, we can find the eigenval-

ues.

det(zI − P ) =
1

4
(x− 1)(4x2 + 1) = 0.

Therefore the eigenvalues are 1, i/2,−i/2 and the matrix P is diagonalizable:
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P = X

1 0 0
0 i/2 0
0 0 −i/2

X−1.

Then,

Pn = X

1 0 0
0 (i/2)n 0
0 0 (−i/2)n

X−1.

From this we can conclude that

Pn
11 = a+ b

( i

2

)n
+ c

(−i

2

)n
,

where a, b, and c are some constants. These constants can be found from
the cases n = 0, 1, 2:

P 0
11 = 1 = a+ b+ c,

P 1
11 = 0 = a+ i(b− c)/2,

P 2
11 = 0 = a− (b+ c)/4,

From the first and the third equations 1 = 5a and so a = 1/5. So, b−c = 2i/5
and b+ c = 4/5 which gives b = 2/5 + i/5 and c = 2/5− i/5. Then,

Pn
11 =

1

5
+

2 + i

5

( i

2

)n
+

2− i

5

(−i

2

)n
.

Alternatively, if we want to avoid complex-valued expressions in the final
answer, then we note that(

± i

2

)n
=

1

2n
e±n iπ

2 =
1

2n

(
cos nπ

2
± i sin nπ

2

)
and so it make sense to search for Pn

11 in the form:

Pn
11 = α+

1

2n

(
β cos nπ

2
+ γ sin nπ

2

)
.

Then, from initial conditions one can find that α = 1/5, β = 4/5 and
γ = −2/5 and so

Pn
11 =

1

5
+

1

2n

(4
5

cos nπ
2

− 2

5
sin nπ

2

)
.
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Invariant Distribution

If P is the transition matrix of a Markov chain then a probability distribution
π is called invariant if

πP = π.

The terms equilibrium or stationary distribution are also used.
The definition of the invariant distribution implies that if Xn is dis-

tributed according to π then Xn+1 is also be distributed according to π.
From an algebraic viewpoint an invariant measure is a left eigenvector

of the matrix P with eigenvalue 1.
In general, a left eigenvector of a matrix A is a non-zero vector x such that

xA = λx. The corresponding λ is a left eigenvalue. However, it is easy to see
that the left eigenvalues of A are the same as the usual eigenvalues. Indeed,
they are solutions to the equation det(zI − At) = det

(
(zI − A)t

)
= 0,

which is the same as the equation det(zI − A) = 0 by a property of the
determinant.

In contrast, the left eigenvectors are typically different from right eigen-
vectors if A is not symmetric.

One obvious property of the stochastic matrices is that they always
have an eigenvalue λ = 1, which corresponds to the (right) eigenvector
v = [1, 1, . . . 1]. So we know that there exists also a left eigenvector with
λ = 1 and this gives us a practical method for computation of the invariant
distribution if the state space is finite.
Example 7.7.4. Find the invariant distribution for the Markov chain from
Example 7.7.3.

The matrix is

P =

0 1 0
0 1

2
1
2

1
2 0 1

2

 .

In order to find the left eigenvector corresponding to the eigenvalue λ = 1,
we need to find the null-space of the matrix

P t − I =

−1 0 1/2
1 −1/2 0
0 1/2 −1/2


Since the dimension of the nullspace is 1 in this example (all eigenvalues
are distinct), the row 3 is a linear combination of rows 1 and 2, which
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are linearly independent. In addition, we have the normalization condition
π1 + π2 + π3 = 1. Hence in order to find the invariant distribution we need
to solve the system: −1 0 1/2

1 −1/2 0
1 1 1

π1π2
π3

 =

00
1

 .

We solved by the Gaussian elimination method:−1 0 1/2 | 0
1 −1/2 0 | 0
1 1 1 | 1

 →

−1 0 1/2 | 0
0 −1 1 | 0
0 1 3/2 | 1

 →

−1 0 1/2 | 0
0 −1 1 | 0
0 0 5/2 | 1


→

−1 0 1/2 | 0
0 −1 1 | 0
0 0 1 | 2/5

 →

−1 0 0 | −1/5
0 −1 0 | −2/5
0 0 1 | 2/5


So we find that the invariant distribution is π1 = 1/5, π2 = 2/5, and π3 =
2/5.

Note from Example 7.7.3 that Pn
11 → 1/5 = π1. This is a particular case

of the general fact that under suitable assumptions about the Markov chain,
for every i the transition probabilities Pn

ij converge to πj as n → ∞.

Now, let us ask the question about the existence of the invariant distri-
bution π.

Theorem 7.7.5. A finite-state Markov chain with transition matrix P al-
ways has an invariant distribution.

Since 1 is an eigenvalue of P , therefore the left eigenvector with eigen-
value 1 exists. However, how do we know that it has non-negative entries?

It turns out that a stochastic matrix X always has a left eigenvector
with eigenvalue 1 and with non-negative entries. The proof of this is not
straightforward.

Is the invariant distribution unique? Not always.
One of the proofs of the existence and uniqueness of the invariant dis-

tribution is based on the Perron-Frobenius theorem. It holds not only for
stochastic matrices but for a more general case of non-negative matrices with
some additional restrictions. (I follow the book “Non-negative matrices” by
Seneta here.)
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The Perron-Frobenius theorem can be formulated in different degrees of
generalities and we do it for an easier case that guarantees that the multi-
plicity of the eigenvalue λ = 1 is exactly 1 and the invariant distribution is
unique.

Definition 7.7.6. A square non-negative matrix A is called primitive if for
some positive integer k, all entries of the matrix Ak are positive.

Theorem 7.7.7. Suppose A is a square non-negative primitive matrix.
Then,

1. There exists a positive real eigenvalue λ such that it is strictly greater
than the absolute value of any other eigenvalue.

2. The algebraic and geometric multiplicities of λ equal 1.

3. The left and right eigenvectors corresponding to λ are strictly positive.

We refer to Seneta for the proof of this theorem. For stochastic primitive
matrices, with some additional effort, it is possible to show that the largest
eigenvalue equals 1. Hence, a consequence of the Perron-Frobenious theorem
is that there exists a unique invariant distribution for every Markov Chain
with primitive transition matrix.

Is a stochastic matrix always diagonalizable? No. There are examples
when it is not, however we will see that a certain class of stochactic matrices
(reversible matrices) is always diagonalizable.

The largest eigenvalue is always 1 and the other eigenvalues are also
important. Consider the simple case when λ1 = 1 > λ2 ≥ . . . ≥ λn, and
assume that there is a basis that consists of left eigenvectors of P . (That
is, P is diagonalizable). Then, if µ(0) is the initial distribution then we can
expand it in the basis:

µ(0) = c1π +

n∑
k=2

ckvk,

where π is the invariant distribution and vk are other left eigenvectors.
Hence, the distribution at step t of the Markov Chain is

µ(t) = µ(0)P t = c1π +
n∑

k=2

λt
kckvk.

This implies that

lim
t→∞

µ(t) = c1π.
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Since µ(t) and π are probability distributions hence c1 = 1 and we see that
the distribution µ(t) converges to the stationary distribution π. In addition,
if λ2 is the eigenvalue that has the second-largest absolute value, and if
c2 ̸= 0, then

|µ(t) − π| ∼ c2∥v2∥|λ2|t.

That is, the speed of the convergence to the stationary distribution depends
on the second largest eigenvalue λ2.

Since the speed of the convergence to the stationary distribution is im-
portant in many applications of Markov Chains, it is often an important
question if some good estimates of the second largest eigenvalue exist.

An example of application

Markov chains are often used to sample from a particular distribution on a
state space. This method is called Markov Chain Monte Carlo simulation
method (MCMC).

The idea is that if a distribution π on the state space is given then one can
build a Markov Chain on this state space so that π is invariant distribution
for this Markov Chain. Then one starts with arbitrary initial state and
runs the chain for a sufficiently long time to ensure the convergence to the
invariant distribution. The resulting state is considered to be a sample from
the invariant distribution.

For this algorithm two important questions are relevant:

1. How can we build a Markov Chain on a state space with specified
transitions and invariant distribution? That is, which transition prob-
abilities should be assigned to these transitions, so that the invariant
distribution of the chain equals to the target distribution?

2. Is it possible to give bounds on the time needed for convergence to
invariant distribution?

For both questions, a special class of Markov chains called reversible
Markov chains is useful. For the first question, it is often a relatively easy
method to build the required chain.

For the second question, the theoretical results are unfortunately scarce.
However, they are easier to come by for reversible chains because they have
more structure imposed on their eigenvectors.

Example (Ising model on a finite graph).
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Consider the Ising model on a graph G. It is useful to keep in mind a
big finite sub-graph of Z2 where two vertices are connected if the distance
between them is 1.

Then a state (or configuration) is the collection of ± spins assigned to
each vertex of v. Formally, a state is a function x : G → {±1}. We write xv
to denote a spin at vertex v. One can also think about a state as a vector
that has length |G| and each element of this vector is either +1 or −1. So
there are 2|G| states. If G is large, this state space is enormous.

We can introduce a probability distribution on this state space:

P(s = {xv} =
1

Z
exp(βH(s)),

where β is a parameter (inverse temperature), and Z is a normalizing con-
stant. The function H(s) (negative of the potential energy) is defined as
follows:

H(s) =
∑
u∼v

xuxv +
∑
u

µxu.

Here the first summation is over all pairs of vertices, which are connected
by an edge (denoted as u ∼ v).

This distribution is called the Gibbs distribution.
One can see that the probability of a state s is larger if the spins at the

neighboring vertices are aligned. In addition, the second term reflects the
presence of a magnetic field: the probability of s is larger if the spins align
along the external magnetic field.

One is often interested in sampling states from this system. The natural
transitions between states is when a spin at a particular vertex is updated:
it is either change to a negative or stays as it is.

A MCMC algorithm construct a Markov Chain such that the vertex
v is chosen randomly and the probability of transition at vertex v only
depends on the neighboring vertices. The transitions probabilities are cho-
sen in such a way that the invariant distribution is the Gibbs distribution.
Unfortunately, not much theoretical results are available for the speed of
convergence.

Reversible Markov Chains

In MCMC the Markov chains often have the property which is called the
reversibility. In this section we will discuss this property and some of its
consequences.
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We have seen previously that symmetric matrices have some additional
useful properties. While a stochastic matrix is rarely symmetric, there is a
subclass of stochastic matrices which shares many good properties of sym-
metric matrices.

A Markov chain with transition matrix P is called reversible if for some
probability distribution µ and all states i, j.

µjPji = µiPij (7.6)

In other words if we multiply rows of matrix P by numbers µi, i = 1, . . . , n,
respectively, then the resulting matrix will be symmetric.

These equations are called the detailed balance equations. The name is
related to the fact that if initial distribution is the invariant distribution,
then for reversible chain it is is not possible to distinguish statistically be-
tween sequences X0, . . . , Xn and Xn, . . . , X0.

In terms of matrices, the detailed balance equations can be written as

DP = (DP )t = P tD, (7.7)

where D is a real diagonal matrix with the entries Dii = µi. (We can write
it as diag(µ).)

Example 7.7.8. Consider the matrix P =

[
1/3 2/3
3/7 4/7

]
. Then if we multiply

the first row by µ1 = 3/7 and the second row by µ2 = 2/3, we find that
the resulting matrix is symmetric. This is not quite what we want since
(µ1, µ2) = (3/7, 2/3) is not a probability distribution. However, we can
multiply this vector (µ1, µ2) by an appropriate constant (namely (3/7 +
2/3)−1) to make sure that the result (µ̂1, µ̂2) is a probability distribution. It
is easy to see that diag(µ̂1, µ̂2)P is still symmetric. Hence, P is reversible.

It turns out that the solution µ of the equation (7.6) is an invariant
distribution.

Lemma 7.7.9. If the probability distribution µ satisfy (7.6) , then µ is
invariant.

Proof. We need to check that µP = µ. We write:

(µP )i =
∑
j

µjPji =
∑
j

µiPij = µi.
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Figure 7.3: An example of a non-reversible chain: a random walk with a bias.

Often this property gives us a convenient tool for finding the invariant
distribution of a chain. We can also use this property to give an example of
a non-reversible chain.
Example 7.7.10. Consider a Markov chain with transition matrix

P =

 0 2/3 1/3
1/3 0 2/3
2/3 1/3 0


The diagram for this chain is shown in 7.3. Clearly π = (1/3, 1/3, 1/3)
is invariant distribution, however matrix P is not symmetric. Hence, the
Markov chain is not reversible.

(Intuitively, this chain is not reversible because even in the steady state
an observer would be able to detect that the movement is mostly clock-wise,
while after the time reversal, the movement would be counter-clockwise.)
Example 7.7.11 (Random walk on a graph). Consider a graph G with vertices
v ∈ V . The degree dv of a vertex v is the number of edges incident with
v. A random walk on the graph G has the transition matrix P with entries
Puv = 1/du if (u, v) is an edge, and Puv = 0 otherwise. It is easy to check
that P satisfies the detailed balance condition with µu = du. It follows that
the random walk is reversible with the invariant measure π = du.

If the graph G is not regular, that is, if it has vertices of differing degrees,
then this invariant measure is not uniform. Vertices with larger degree will
be visited more often than vertices with smaller degree. What if we want
to have at our disposal a Markov chain on the graph G that would have the
same transitions, – from a vertex to their neighbors, – but that would have
a uniform distribution on vertices?
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In this case, we can use a lazy random walk. Namely, suppose d =
max{d1, . . . , d|V |} is the maximum vertex degree in the graph. Then we set
Puv = 1/d if (u, v) is an edge, and Puu = 1−du/d. In other words, if du < d
then with positive probability the particle will stay at vertex u and wait
for the next time period. Since the resulting matrix P is symmetric, the
uniform distribution is invariant for this chain.

Now we are going to justify our claim that the transition matrices for
reversible chains have some properties which are similar to the properties of
the symmetric matrices. Namely, they have an analogue of the orthogonal
diagonalization which is the trademark of symmetric matrices.

Theorem 7.7.12. The eigenvalues of the transition matrix P of a reversible
Markov chain are real and P has the following factorization:

P = D−1/2QΛQtD1/2.

where D is a diagonal matrix whose diagonal entries are the elements of the
invariant distribution, and Q is an orthogonal matrix.

The fact that the eigenvalues of P are real for a system invariant to
time-reversal is an important general fact. In addition, the decomposition
stated in the theorem is useful in the analysis of properties of P .

Proof. The matrix form of the detailed balance equations (7.7) can be writ-
ten as

D1/2PD−1/2 = D−1/2P tD1/2

=
(
D1/2PD−1/2

)t
.

In other words, the matrix

P̂ = D1/2PD−1/2

is symmetric. Therefore, it has an orthogonal diagonalization QΛQt and its
eigenvalues are real. Since P is similar to P̂ its eigenvalues are also real and
it has diagonalization

P = D−1/2QΛQtD1/2.
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7.8 Exercises

Exercise 7.8.1. Consider the 2× 2 matrix A =

[
1 5
−2 3

]
.

a. Calculate the eigenvalues of A.

b. If possible, construct matrices P and C such that A = PCP−1, where C
is diagonal.

Exercise 7.8.2. Let

A =

 0 1 −1
1 0 1
−1 1 0

 ,

A has exactly two distinct eigenvalues, which are −2, and 1.
If possible, construct matrices P and D such that A = PDP t , P is a

matrix with orthonormal columns, and D is a diagonal matrix.
Exercise 7.8.3. a. If A2 = I, what are possible eigenvalues of A?

b. If this A is 2× 2 and not I or −I, find its trace and determinant.

c. If the first row of this matrix is (3,−1), what is the second row?
Exercise 7.8.4. (a) A 2 × 2 matrix A satisfies tr(A2) = 5 and tr(A) = 3

(where tr(X) denotes the trace of X). Find det(A).

(b) A 2 × 2 matrix A has two proportional columns and tr(A) = 5. Find
tr(A2).

(c) A 2×2 matrix A has det(A) = 5 and positive integer eigenvalues. What
is the trace of A?

Exercise 7.8.5. For each of the following statements, prove that it is true
or give an example to show it is false. Throughout, A is a complex m ×m
matrix unless otherwise indicated.

a. If λ is an eigenvalue of A and µ ∈ C, then λ−µ is an eigenvalue of A−µI.

b. If A is real and λ is an eigenvalue of A, then so is −λ.

c. If A is real and λ is an eigenvalue of A, then so is λ.

d. If λ is an eigenvalue of A and A is non-singular, then λ−1 is an eigenvalue
of A−1.
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e. If all the eigenvalues of A are zero, then A = 0.

f. If A is diagonalizable and all its eigenvalues are equal, then A is diagonal.

g. If A is invertible and diagonalizable, then A−1 is diagonalizable.

h. Matrices A and At have the same eigenvalues.

Exercise 7.8.6. Suppose each “Gibonacci” number Gk+2 is the average of
the two previous numbers Gk+1 and Gk. Then Gk+2 = 1

2(Gk+1 + Gk). In
matrix form this can be written as

[
Gk+2

Gk+1

]
= A

[
Gk+1

Gk

]
.

a. Find the eigenvalues and eigenvectors of A.

b. Find the limit of the matrices An as n → ∞.

c. If G0 = 0 and G1 = 1, which number do the Gibonacci numbers ap-
proach?

Exercise 7.8.7. A flea hops about at random on the vertices of a triangle
with all jumps equally likely. (So if the vertices are labeled 1, 2, 3 and the
flea is at vertex 1 then it jumps to vertices 2 and 3 with probabilities 1/2
and 1/2, respectively.) Find the probability that after n hops the flea is
back where it started.

A second flea also hops about on the vertices of a triangle, but this flea is
twice as likely to jump clockwise as anti-clockwise. What is the probability
that after n hops this second flea is back where it started. [Recall that
e±iπ/6 =

√
3/2± i/2.]

Exercise 7.8.8. Let Xn, n = 0, 1, . . ., be a Markov chain on {1, 2, 3} with
transition matrix

P =

 0 1 0
0 2/3 1/3
1/2 1/2 0

 .

Calculate the invariant distribution for this chain.
Exercise 7.8.9. In each of the following cases determine whether the stochas-
tic matrix P is reversible:
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1. [
1− p p
q 1− q

]
;

(0 < p < 1 and 0 < q < 1.)

2.  0 p 1− p
1− p 0 p
p 1− p 0

 ;

(0 < p < 1)

3. The state space is {0, 1, . . . , N} and pij = 0 if only if |j − i| ≥ 2.

Exercise 7.8.10. ( ∗) The spectral radius ρ(A) of a square matrix A is the
largest absolute value of an eigenvalue λ of A.

For an arbitrary m×m complex matrix A and the operator norm ∥ · ∥,
prove using the Schur decomposition:

lim
n→∞

∥An∥ = 0 if and only if ρ(A) < 1.

7.9 Appendix: Complex numbers
Complex number is a pair of real numbers (x, y). So, it is essentially a
vector in R2. The addition of complex numbers is the addition of vectors.
However, the wonderful fact is that there is also a multiplication operation.
This operation has no analogue for vectors in Rn for general n.

It is easier to remember this operation, if we write complex numbers as
z = x+ iy, in which case the product of two complex number is defined as
z1z2 := x1x2−y1y2+ i(x1y2+x2y1). This is the same as if we thought about
i as a special kind of number with property i2 = −1.

It turns out that this operation is associative and commutative and sat-
isfies the distributive law with respect to the addition.

Formally, we converted the linear space R2 to a commutative algebra
over R.

One important new operation is that of conjugation: x+ iy = x − iy.
Note that zz = x2 + y2 = ∥z∥2. In the context of complex numbers, ∥z∥ is
called the absolute value, or the modulus of z.

Since we have multiplication and addition, we can define polynomials and
power series using complex numbers. The convergence for series is defined
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using the norm in R2. In particular, we can define the exponential function
ez as the convergent series

∑∞
k=0 z

k/k! = 1 + z + z2/2! + . . .. This function
preserves the important property of the standard exponential function:

ez1+z2 = ez1ez2 .

In particular, ex+iy = exeiy. In addition, directly from definition of ez,
we can obtain

eiy = cos y + i sin y.

Therefore,

ex+iy = ex(cos y + i sin y).

This formula allows us to give a geometric meaning to the product opera-
tion. For this we need to represent the vector z = (x, y) in polar coordinates
as (r cosα, r sinα). Here r =

√
x2 + y2 = ∥z∥, and α is called the argument

of z.
Then, z = x + iy = elog r+iα. If we have another complex number

z′ = x′ + y′ = elog r′+iα′ then the addition formula for the exponential gives
us:

zz′ = elog r+log r′+i(α+α′
) = rr′ei(α+α′).

In other words, when we multiply z and z′, their absolute values are multi-
plied, and their arguments are added.

The fundamental theorem of algebra says that every equation of degree
n (with coefficient in real or complex numbers) has at least one solution in
complex numbers. This can be strengthened to the statement that it has
exactly n solutions if we count the solutions with multiplicities. The proof
of this remarkable theorem is quite non-trivial.
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Chapter 8

Bilinear and Quadratic
Forms

Reading for this Chapter

• Strang: Chapter 6.

8.1 Definitions and diagonalization
A bilinear form is a map that sends a pair of vectors to a number, B :
Rn × Rn → R. This map is required to be linear in both arguments:

B(α1x1 + α2x2, y) = α1B(x1, y) + α2B(x2, y)

B(x, α1y1 + α2y2) = α1B(x, y1) + α2B(x, y2)

A bilinear symmetric form has an additional property B(x, y) = B(y, x).
Remark: the bilinear forms can also be defined for complex numbers,

however, a more useful concept in that setting is the concept of Hermi-
tian forms, when B(λx, y) = λB(x, y), B(x, y) = B(y, x) which implies
B(x, λy) = λB(x, y). (So, the Hermitian form is linear in the second ar-
gument and “conjugate-linear” or antilinear in the first argument. In the
following, for concretenes we focus the discussion on bilinear forms.

For a bilinear form, one can define a quadratic form Q(x) = B(x, x).
Conversely, if we are given a quadratic form Q(x) then we can define a
symmetric bilinear form as B(x, y) = [Q(x+ y)−Q(x− y)]/4.

To every bilinear form B(x, y) we can associate a matrix Bij = B(ei, ej).
If the bilinear form is symmetric then the matrix is also symmetric. If
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x = (x1, . . . , xn) in the standard basis, then the bi-linearity of the form
implies that

B(x, y) = xtBy.

We can also approach this topic from another, more elementary angle.
Quadratic form in variables x1, . . . , xn is a polynomial Q(x1, . . . , xn) whose
monomials have the degree exactly 2. That is, it is a homogeneous polyno-
mial of degree 2, and we can write it as

Q(x1, . . . , xn) =
n∑

i=1

biix
2
i + 2

∑
1≤i<j≤n

bijxixj .

We can write this expression using matrices:

Q(x) = xtBx,

where B is a symmetric matrix with entries Bij = Bji := Bij . In this section
we assume that Bij are real.

This matrix B is exactly the matrix of the symmetric bilinear form that
corresponds to quadratic form Q.
Example 8.1.1. What is the matrix for the form: x21 + 3x22 + 5x23 + 4x1x2 −
16x1x3 + 7x2x3?

If we change the variables x = Ry, where R is an invertible matrix, then
in the new variables this form will be

Q(y) = ytRtBRy.

The transformation

B → RtBR

is called the congruence transformation on matrices. Compare this with the
similarity transformation B → X−1BX.

We are interested in the properties of quadratic forms and associated
matrices which do not depend on the change of variables, that is, which are
invariant with respect to congruence transformations.

The main fact here is that every symmetric matrix B can be brought to
the diagonal form by a suitable congruence transformation. In fact, there
are many congruence transformations that accomplish this task. The most
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straightforward method is based on orthogonal diagonalization. Indeed,
since B is a real symmetric matrix we can write it as

B = QΛQt,

where Q is an orthogonal matrix. Hence,

QtBQ = Λ,

and we are done.
Example 8.1.2. Consider the quadratic form Q(x) = 2x21 + 2x1x2 + 2x22.
Bring it to the diagonal form.

There are some other methods, which are simpler computationally and
involve only algebraic operations.

One of them is based on elementary row and column operations. Suppose
that we reduce B by row operations to the upper-diagonal form as we did in
the algorithm for LU decomposition. Note that B is symmetric and so when
we perform row operations in the row reduction procedure, we can also do
analogous operations on columns. As a result we will get a decomposition
of the matrix B:

B = LDLt,

where L is a lower-triangular matrix with ones on the main diagonal and D
is the diagonal matrix with the pivots on the main diagonal.
Example 8.1.3. Let us find a “congruence” diagonalization of a matrix B by
using the algorithm that we just described. We are looking for C such that
C∗AC = D, where D is diagonal and C is non-singular. Let

B =

 1 2 −3
2 5 −4
−3 −4 8


Then, we can do the following sequence of row and column transformations.
[We perform column operations only on the left hand side of the augmented
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matrix.] 1 2 −3 | 1 0 0
2 5 −4 | 0 1 0
−3 −4 8 | 0 0 1

 R2−2R1−−−−−→

 1 2 −3 | 1 0 0
0 1 2 | −2 1 0
−3 −4 8 | 0 0 1


C2−C1−−−−→

 1 0 −3 | 1 0 0
0 1 2 | −2 1 0
−3 2 8 | 0 0 1

 R3+3R1−−−−−→

1 0 −3 | 1 0 0
0 1 2 | −2 1 0
0 2 −1 | 3 0 1


C3+3C1−−−−−→

1 0 0 | 1 0 0
0 1 2 | −2 1 0
0 2 −1 | 3 0 1

 R3−2R2−−−−−→

1 0 0 | 1 0 0
0 1 2 | −2 1 0
0 0 −5 | 7 −2 1


C3−2C2−−−−−→

1 0 0 | 1 0 0
0 1 0 | −2 1 0
0 0 −5 | 7 −2 1


This means that

C∗ =

 1 0 0
−2 1 0
7 −2 1

 , D =

1 0 0
0 1 0
0 0 −5


(From the practical point of view it is enough to do the row operations,
the column operations are done only to illustrate that the matrix is indeed
reduced to the diagonal form.)

Note that this algorithm fails if one needs to do an exchange of rows as
for example for matrix

A =

[
0 1
1 0

]
(In this case one can proceed by introducing the non-zero element by a row
operation. For example:[

0 1 | 1 0
1 0 | 0 1

]
R1+

1
2
R2−−−−−→

[
1/2 1 | 1 1/2
1 0 | 0 1

]
C1+

1
2
C2−−−−−→

[
1 1 | 1 1/2
1 0 | 0 1

]
→ . . .

but the resulting matrix C∗ is no longer lower-triangular.
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8.2 Positive definite forms
Let Q be a quadratic form and A a corresponding symmetric matrix: Q(x, x) =
xtAx. (I have changed the notation from B to A here, sorry.) A quadratic
form Q and the corresponding matrix A are called positive definite if Q(x) =
xtAx > 0 for every x ̸= 0. It is clear that this property does not depend
on the change of variables, so for invertible matrices R, matrix A is positive
definite if and only if matrix RtAR is positive definite.

In applications it is often needed to check whether a matrix is positive
definite. In particular, Q(x) has a strict minimum at 0 if and only Q(x) is
positive definite. We can check whether a quadratic form is positive-definite
by using one of the criteria given by the following theorem.

Theorem 8.2.1. Suppose Q(x) = xtAx where A is a real symmetric matrix.
Then, each of the following tests is a necessary and sufficient condition for
the form Q(x) to be positive definite:

1. All the eigenvalues of A satisfy λi > 0.

2. A can be reduced to the upper diagonal form without row exchanges
and all the pivots (without row exchanges) satisfy dk > 0.

3. All the upper left k × k sub-matrices Ak have positive determinants.

Proof. Matrix A is real symmetric, so we can write an orthogonal diago-
nalization: A = QΛQt, so A is positive-definite if and only if Λ is positive
definite, and the form for Λ is Q(x) = λ1x

2
1+ . . . λnx

2
n, and so it is clear that

it is positive definite if and only if λi > 0 for every i.
Next, we are going to prove that if A is positive-definite, then (2) holds.

We perform the algorithm described above. At every stage, after we perform
a row operation and a corresponding row operation, the matrix remains
positive definite. In particular, there can be no zero elements on the main
diagonal, so a row exchange is never required. Eventually, we will get a
diagonal matrix and all the diagonal elements dk (pivots) must be positive.

Conversely, (2) implies that the matrix A is positive-definite. Indeed,
condition (2) implies that we can find a decomposition of the matrix A:

A = LDLt,

where L is a lower-triangular matrix with ones on the main diagonal and D
is the diagonal matrix with the pivots on the main diagonal. Since dk > 0,
it follows that A is positive definite.
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Finally we claim that (2) is equivalent to (3). Indeed, the row operations
do not change the determinants of Ak. So if (2) holds then all of these
determinants must be positive: det(Ak) = d1 . . . dk. Conversely, if all of
these determinants are positive, then the row exchange is never required
(otherwise, one of the determinants at this stage would be equal to zero) and
all pivots must be positive (or one of the determinants would be negative.

Another useful fact is that a positive definite matrix A can be factorized
as RtR.

Theorem 8.2.2. The symmetric n× n matrix A is positive definite if and
only if there is a non-singular n matrix R with independent columns such
that A = RtR.

Proof. Suppose A = RtR, where R is non-singular. Then, xtAx = (Rx)tRx =
∥Rx∥ ≥ 0. If this quantity is zero, then Rx = 0, hence x = 0 because R is
non-singular.

In the other direction, we can write A = LDLt, where L is lower diagonal
and D is a diagonal matrix with positive entries on the diagonal. Then
we can take R =

√
DLt, and observe that the columns of R are linearly

independent.

The decomposition A = RtR, where R is upper-diagonal is often called
the Cholesky decomposition of a positive definite matrix.

8.3 Law of Inertia
What can be said about more general situation, when the form Q(x) repre-
sented by a symmetric matrix A is not necessarily positive definite?

It turns out that in this case, it can be reduced by a suitable change
of variable to a form represented by a diagonal matrix that have only ±1
or 0 on the main diagonal. Moreover, the number of positive, negative and
zero items on the main diagonal of this diagonal matrix does not depend
on the particular choice of this change of variables. This statement is called
Sylvester’s law of inertia and it follows from the following result.

Theorem 8.3.1. Let A be a real symmetric matrix and C be a real invertible
matrix. Then, matrix CtAC has the same number of positive eigenvalues,
negative eigenvalues, and zero eigenvalues as A.
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So we can define the signature of a quadratic form as a triple (kp, kn, k0),
where the kp, kn, and k0 is the number of positive, negative and zero entries
on the main diagonal of any of these diagonal matrices. (Sometimes kp− kn
is also called the signature of the form.)

Proof of Theorem 8.3.1. We give a sketch of a proof for a simpler situation in
which A is non-singular, so we do not need to worry about zero eigenvalues.

Let C(u), u ∈ [0, 1], be a family of matrices such that C(0) = C, C(1) =
Q, where Q is an orthogonal matrix, and C(u) is never singular. (We will
prove that it is possible to find such family of matrices below.) Then the
matrix C(u)∗AC(u) is never singular, so its determinant is never zero, and
therefore, its eigenvalues are never zero. In addition, the eigenvalues of
C(u)∗AC(u) are continuous in u. (We skip the proof of this claim.) It
follows that they can never change sign, when u changes from 0 to 1, and
therefore, the number of positive eigenvalues of C∗AC is the same as the
number of positive eigenvalues of Q∗AQ. However, Q∗AQ has the same
eigenvalues as A.

In order to prove that there is a required C(u) we can take Q from
the QR decomposition C = QR. We choose the decomposition in such a
way that R has positive entries on the main diagonal. Then we can write
C(u) = Q

(
uI + (1 − u)R

)
, and this matrix is always non-singular because

the matrix
(
uI +(1− u)R

)
is upper-diagonal and has positive entries on its

diagonal.

8.4 Exercises
Exercise 8.4.1. Let

A =

 1 −3 2
−3 7 −5
2 −5 8


Find a nonsingular real matrix C, such that D = C∗AC is diagonal, and
find sign(A), the signature of A.
Exercise 8.4.2. Determine whether each of the following quadratic forms Q
is positive definite:

(a) Q(x, y, z) = x2 + 2y2 − 4xz − 4yz + 7z2.

(b) Q(x, y, z) = x2 + y2 + 2xz + 4yz + 3z2.
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Chapter 9

Singular Value
Decomposition (SVD)

Reading for this Chapter

• Strang: Section 6.3

• Trefethen, Bau: Lectures 3, 4, and 5

9.1 Matrix norms
Matrices form a linear space so we can talk about norms of matrices. Since
matrices also have some additional structure: for example, they act on vec-
tors, – there are some additional issues for matrix norms.

The two most popular matrix norms are Frobenius and operator norms.
The Frobenius norm is defined as follows:

∥A∥F :=

√√√√ m∑
i=1

n∑
j=1

|Aij |2 =
√

Tr(A∗A),

where Tr is the trace: TrM =
∑n

i=1Mii.
It is easy to see that the Frobenius norm of A is simply the norm of the

long vector formed by stacking all column vectors of A together. The benefit
of this norm is that it is essentially our familiar vector norm, in particular,
there is an associated scalar product: ⟨A,B⟩ = Tr(A∗B). One of the big
advantages of the Frobenius norm is that it is easy to calculate. Another
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useful norm, or rather a family of norms, is called the operator norm and it
is defined by the following formula:

∥A∥ := sup
v ̸=0

∥Av∥
∥v∥

= sup
v:∥v∥=1

∥Av∥. (9.1)

The operator norm depends on which vectors norms we choose to use to
measure ∥v∥ and ∥Av∥. The most frequent situation is when both are usual
Euclidean norms, that is, ℓ2 vector norms: ∥v∥ = (

∑
v2j )

1/2. Sometimes, to
make this clear, the operator norm can be denoted ∥A∥(2,2) or ∥A∥2. Below,
if we say “operator norm” without qualifier we mean the 2-norm ∥A∥2.

From (9.1), it is clear that the operator norm equals the maximum in-
crease in the length of a vector which is achieved by the linear transforma-
tion that have matrix A. Obviously, this is a useful quantity but it is more
difficult to calculate.
Example 9.1.1. Let D is an m × n diagonal matrix with diagonal elements
d1 ≥ d2 ≥ . . . ≥ dn ≥ 0. (We assume m ≥ n.) What are the Frobenius and
the operator norms of this matrix?

So far we talked about matrix norms as functions on matrices that satisfy
the axioms of vector norms. However, sometimes additional requirements
are imposed on matrix norms, which are related to such operations on ma-
trices such as taking the adjoint (or transposition) and the multiplication.
In particular, it is usually required that

∥A∗∥ = ∥A∥,

and

∥AB∥ ≤ ∥A∥∥B∥.

Both the operator norm and the Frobenius norm satisfy these proper-
ties. For the operator norm it is essentially by definition and for the Frobe-
nius norm it is an exercise based on the Cauchy-Schwarz inequality. (See
Trefethen-Bau textbook, p.23, for a derivation.)

Another important property of these two norms is that they are invariant
relative to unitary transformations.

Theorem 9.1.2. For every m×n matrix A and every unitary m×m matrix
Q, we have

∥QA∥2 = ∥A∥2, and
∥QA∥F = ∥A∥F .
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9.2 Definition and existence of SVD
The motivation for the eigenvalue decomposition of a square matrix A is to
find a basis {vi}ni=1, in which the linear transformation A has the simplest
possible form: A : vi → λivi. When we can find such decomposition, it
gives an enormous insight in the properties of A. However, there are some
problems with this approach.

1. Matrix A must be square, that is, the linear transformation must be
an endomorphism: it maps the linear space to itself.

2. In many cases we encounter complex eigenvalues and eigenvectors

3. The basis of eigenvectors is not always orthogonal, which means that
it is not easy to measure distances in this basis.

4. The eigenvalue decomposition does not always exist and we need to
use the Jordan matrices instead of diagonal matrices.

These problems disappear for symmetric matrices but it is a big restric-
tion.

The SVD decomposition is a different approach to the study of properties
of linear transformations. Suppose A : Rn → Rm. Then we look for two
orthonormal bases {vi}ni=1 and {ui}mi=1 such that

Avi = σiui, for all i ≤ min{n,m}, (9.2)

where σi ≥ 0 are some real non-negative numbers. If n > m we also require
that Avi = 0 for all i > min{n,m}. (In fact this requirements is satisfied
automatically.)

In matrix form, this is equivalent to the following definition.

Definition 9.2.1. A singular value decomposition (SVD) of an m×n matrix
A is the following product

A = UΣV ∗, (9.3)

where U is an m×m unitary matrix, V ∗ is an n× n unitary matrix and Σ
is an m× n diagonal matrix with real non-negative entries. That is, if i ̸= j
then Σij = 0, otherwise Σii ≥ 0.

The diagonal elements of the matrix Σ are called singular values and
denoted σi. For a real matrix A all elements in matrices U and V can
be chosen to be real (so in particular, U and V are orthogonal matrices).
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By convention, σ1 ≥ σ2 ≥ . . . ≥ σn. This is always can be achieved by
re-arranging columns of U and V .

The columns of matrices V and U are the orthonormal bases {vi}ni=1 and
{ui}mi=1 that we introduced above and it is easy to see that property (9.4)
holds. Moreover, we also have the following property:

A∗ui = σivi, for all i ≤ min{n,m}. (9.4)

Figure 9.1: Full SVD decomposi-
tion, m > n

Intuitively, for m ≥ n, if A repre-
sent a linear transformation, then we
can write it as a rotation in Rn, rep-
resented by V ∗, followed by a map Σ
that stretches the result and imbeds it
isometrically to Rm, and completed by
another rotation in Rm, represented by
U .

In particular, this interpretation
suggests that a unit sphere in Rn will be mapped to an ellipsoid in Rm

and the half-lengths of the ellipsoid’s principal axes will be equal to the
singular values σi := Σii.

The decomposition is clearly not unique if m > n. In the picture, the
portion of the matrix U selected by dashed lines will be multiplied by zeros in
the matrix Σ. Therefore, this portion can be chosen arbitrarily. Intuitively,
we can rotate the orthogonal complement to the range of the map A in
arbitrary way.

If we want to remove this source of non-uniqueness, then it is useful to
define a reduced singular value decomposition. Assume that m ≥ n and that
A is full rank, so that its range space has dimension n. Then the reduced
SVD is

A = Û Σ̂V ∗, (9.5)

where Û is an m×n matrix that has an orthonormal set of columns. Matrix
Σ̂ is a square n × n diagonal matrix. And matrix V ∗ is the same as in full
SVD, that is, it is an n× n unitary matrix.

Figure 9.2: Reduced SVD decom-
position, m > n

In the reduced SVD, Û is not is not
square (if m ̸= n) and therefore it is
not unitary. However, Û∗Û = In. In-
tutitively, the matrix Û is an isometric
embedding of Rn in Rm. Its columns
give an orthonormal basis in the image
of this embedding.
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The reduced SVD is still not unique.
However, this non-uniqueness is mild.
It is up to permutation of certain columns and rows in these matrices and
up to multiplication of columns and rows by ±1. It can be almost fixed by
requiring that σ1 ≥ σ2 ≥ . . . ≥ σn and that the first elements in columns of
U and rows of V ∗ are positive. In exceptional cases when some σi are equal,
some additional effort may be needed to get the uniqueness, however, this
rarely happens in practice.

Figure 9.3: SVD decomposition of a 2× 2 matrix

Geometric meaning of matrices Û , Σ̂, V

If v1, v2, . . . vn are the columns of V , u1, u2, . . . un are the columns of Û , and
σ1, . . . , σn are the diagonal entries of Σ̂, then matrix A sends vi → σiui. See
illustration in Figure 9.3.

The existence of the SVD decomposition

Here is Theorem 4.1 from Trefethen - Bau.

Theorem 9.2.2. Every matrix A has a singular value decomposition (9.5).
Furthermore the singular values σi are uniquely determined. If A is square
and the σi are distinct then the corresponding column vectors in U and V
are uniquely determined up to a multiplication by a scalar that have absolute
value 1.

For the complete proof, see the Trefethen-Bau book. Here is a sketch of
the proof of the existence claim for m ≥ n.
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Proof of the existence claim. For concreteness, let us work with real matri-
ces.

We will use induction on the size of the matrix and leave the base of the
induction (the case when n = 1) as an exercise.

By a compactness argument, the supremum in the definition of the ma-
trix norm (9.1) is attained on a vector v1, and so there exist vectors u1 and
v1 such that u1 = Av1/∥A∥, |v1| = 1, |u1| = 1. (In addition it can be proved
that for a real matrix A, the maximizing vector v1 can be chosen to be real.)

Let us define σ1 = ∥A∥, so we have u1 = σ1Av1. Complete the vec-
tors u1 and v1 to a pair of orthonormal bases {ui} and {vj} in Rm and
Rn, respectively. Let U1 and V1 be the matrices with columns ui and vi,
respectively.

Then from Av1 = u1 we have that

U∗
1AV1 = S =

[
σ1 w∗

0 B

]
.

We claim that in fact if the norm of A is attained on v1, then the vector w
must be zero.

Indeed, S is obtained from A by a multiplication by two orthogonal
matrices on both sides, so it has the same norm as A, that is, ∥S∥ = σ1.
Then, we notice that the first element of the vector

S

[
σ1
w

]
=

[
σ1 w∗

0 B

] [
σ1
w

]
is σ2

1 + w∗w. Hence

∥∥∥∥S [
σ1
w

] ∥∥∥∥ ≥ σ2
1 + w∗w =

(
σ2
1 + w∗w

)1/2∥∥∥∥ [σ1w
] ∥∥∥∥

So ∥S∥ ≥
(
σ2
1 + w∗w

)1/2 , so it must be that w = 0.
Also note that ∥B∥ ≤ ∥A∥.
However, then we can apply the induction hypothesis to the matrix B

and notice that it can be written as B = U2Σ2V
∗
2 .

This leads to the decomposition

A = U1

[
1 0
0 U2

] [
σ1 0
0 Σ2

] [
1 0
0 V2

]∗
V ∗
1 ,

which gives an SVD for matrix A.
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Note that in fact, the proof gave us more than the existence of the SVD.
It also showed that the largest singular value σ1 equals to the maximum of
∥Ax∥ subject to the constraint ∥x∥ = 1, and that the maximum is achieved
at the right singular vector v1.

Moreover, by analyzing the proof, we see that σ2 = max ∥Ax∥ subject
to ∥x∥ = 1 and an additional constraint x ⊥ v1 and that this maximum is
achieved at v2. We can continue this and find that σk = max ∥Ax∥ subject
to the constraints that ∥x∥ = 1 and that x ⊥ span(v1, . . . , vk−1).

9.3 Relation to eigenvalue decomposition
Previously, we learned that many matrices can be diagonalized and repre-
sented in the form A = XΛX−1 where Λ is the diagonal matrix of eigenvalues
and X is the matrix, whose columns are eigenvectors.

For general matrices, the connection between eigenvalues and singular
values is not straightforward. There is a bunch of inequalities between the
singular values and absolute values of eigenvalues. There is also a wonderful
connection between them for large random matrices, however, we are not
going to talk about it here.

The eigenvalue diagonalization is very useful when matrix A is symmetric
(or Hermitian in the complex case). In this case, all eigenvalues are real and
one can choose eigenvectors in such a way that they form an orthonormal set,
so that matrix X is orthogonal. This is very close to the SVD decomposition
and the difference is that some eigenvalues may happen to be negative, while
all singular values must be non-negative.

Theorem 9.3.1. If A is a symmetric n×n matrix, then the singular values of
A are the absolute values of the eigenvalues of A, σi = |λi|, for i = 1, . . . , n.

Proof. In the case of symmetric (or Hermitian) matrices, we have the eigen-
value decomposition:

A = QΛQ∗,

where Λ and Q are diagonal and orthogonal (or unitary) matrices, respec-
tively. We can easily convert it to the SVD decompositions by multiplying
some of the columns by −1,

A = Q|Λ|sign(Λ)Q∗,

where |Λ| is the diagonal matrix with |λi| on the main diagonal and sign(Λ)
is the diagonal matrix with the diagonal entries sign(λi). We can also choose
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the ordering of λi in such a way that its absolute values decrease: |λ1| ≥
|λ2| ≥ . . . ≥ |λn|. This decomposition shows that σi = |λi|.

The proof also shows that in the SVD decomposition of a symmetric or
an Hermitian matrix, U = Q and V equals Q with some of the columns
multiplied by −1.

For more general matrices, we can still use the eigenvalue diagonalization
to calculate the SVD.

Theorem 9.3.2. Let A be an m × n matrix and t = min{m,n}. Matrices
A∗A and AA∗ have the same sets of t eigenvalues with the largest absolute
value, and the t singular values of A are the square roots of these eigenvalues.

Proof. Let the (full) singular value decomposition for A be

A = UΣV ∗,

where Σ is m× n matrix and U and V are orthogonal. Then,

A∗A = V (Σ∗Σ)V ∗,

AA∗ = U(ΣΣ∗)U∗

where A∗A is n× n matrix and A∗A is m×m. The matrices Σ∗Σ and ΣΣ∗

are diagonal and its first t diagonal elements are σ2
1, . . . , σ

2
t .

Hence the first t eigenvalues of A∗A with the largest absolute value are
the same as the first t eigenvalues of AA∗ with the largest absolute value,
and both sets are equal to {σ2

1, . . . , σ
2
t }.

Note that the proof also shows that V corresponds to eigenvectors of
matrix A∗A. And U of the full SVD can be calculated as the matrix of
eigenvectors of AA∗.

In the situation when m > n we are typically interested in the reduced
SVD and we can observe that A maps column vectors of V to column vectors
of Û (the U matrix of the reduced decomposition, except it stretches them by
the singular values. Hence, we can calculate ui = (1/σi)Avi. The situation
with σi = 0 is special. In this case one can simply take a unit vector ui
which is perpendicular to all other left-singular vectors. (See an example
below for an illustration.)

Note also that this theorem gives another proof of Theorem 9.3.1, since
for a real symmetric matrix A, we have A∗A = A2 and the eigenvalues of A2

are equal to the squares of eigenvalues of A. So, by Theorem 9.3.2, singular
values of A are equal to

√
λ2
i = |λi|, absolute values of eigenvalues of A.
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Example 9.3.3. Find the (reduced) SVD decomposition of the matrix

A =

 1 −1
−2 2
2 −2

 .

We have

A∗A =

[
9 −9
−9 9

]
Then we can calculate the eigenvalues λ1 = 18, λ2 = 0. (This can be done
either by finding the roots of the characteristic polynomial, or by noticing
that the matrix is singular, so one of the eigenvalues must be zero, and
finding the second one from the fact that the trace of the matrix is equal to
the sum of the eigenvalues.) Hence the singular values are σ1 =

√
18 = 3

√
2,

σ2 = 0. The eigenvectors of A∗A are v1 = 1√
2
[1,−1]∗ and v2 = 1√

2
[1, 1]∗.

These are right singular vectors.
We calculate the first left singular vector as

u1 =
1

3
√
2
Av1 =

1

3
√
2

 1 −1
−2 2
2 −2

 1√
2

[
1
−1

]
=

1

3

 1
−2
2


Since σ2 = 0, we can take any unit vector perpendicular to u1 as the second
left singular vector. For example, u2 = 1√

5
[2, 1, 0]∗ will do.

So, one possible reduced SVD of A is

A =

 1/3 2/
√
5

−2/3 1/
√
5

2/3 0

[
3
√
2 0

0 0

] [
1/

√
2 1/

√
2

−1/
√
2 1/

√
2

]

9.4 Properties of the SVD and singular values
Theorem 9.4.1. Let A = UΣV ∗ be the full SVD of A and let r be the
number of non-zero singular values. Then

Range(A) = span{u1, . . . , ur},
Null(A) = span{vr+1, . . . , vn},

where ui and vj are columns of matrices U and V respectively. In particular
the rank of A equals r.
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Proof. The matrices U and V are full rank orthogonal matrices. Essentially
they simply rotate Rm and Rn. What is important is that the Range(Σ) =
span{e1, . . . , er} in Rm and Null(Σ) = span{er+1, . . . , en} in Rn.

The operator and Frobenius norms of a matrix can be written in terms
of its singular values.

Theorem 9.4.2. Let σ1 ≥ σ2 ≥ . . . ≥ σr > 0 be non-zero singular values of
matrix A. Then,

∥A∥2 = σ1,

∥A∥F =
√
σ2
1 + . . .+ σ2

r .

Proof. Note that multiplication by an orthogonal (or unitary) matrix does
not change the norm of a vector. This implies that ∥A∥2 = ∥Σ∥2, and it is
easy to check that ∥Σ∥2 = σ1. For the Frobenius norm, we calculate:

∥A∥2F = Tr(A∗A) = Tr
(
(V Σ∗U∗)(UΣV ∗)

)
= Tr

(
V Σ∗ΣV ∗

)
= Tr(Σ∗Σ),

where the last step is by the property of the trace: Tr(AB) = Tr(BA).
And the last quantity is easy to calculate:

Tr(Σ∗Σ) = σ2
1 + . . .+ σ2

r .

Now let us consider the relation of eigenvalues and singular values to
the determinant. For eigenvalues, we have seen that det(A) =

∏n
i=1 λi. If

matrix A has an eigenvalue decomposition, then

det(A) = det(XΛX−1) = det(X) det(Λ) det(X)−1

= det(Λ) =
n∏

i=1

λi.

In general it follows because det(zI − A) = (z − λ1) . . . (z − λn) by setting
z = 0.

It turns out that we can also write a similar formula using the singular
values, except that we lose the information about the sign of the determi-
nant.
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Theorem 9.4.3. For an m×m matrix A,

| det(A)| =
m∏
i=1

σi,

where σi are singular values of the matrix A.

Proof. By using the multiplicative property of the determinant, we write:

det(A) = det(UΣV ∗) = det(U) det(Σ) det(V ∗)

Now we use the fact that the determinant of a unitary matrix has absolute
value 1. (This holds because (i) det(U) det(U∗) = det(UU∗) = 1, and (ii)
det(U∗) = det(U). Hence | det(U)|2 = 1, and therefore | det(U)| = 1.)
Therefore

| det(A)| = | det(Σ)| =
m∏
i=1

σi.

9.5 Low-rank approximation via SVD
The SVD is useful because it allows us to construct low-rank approximations
to a matrix which are optimal both in the Frobenius and operator norms.

Given an integer ν ≥ 1, a rank-ν approximation to a matrix A in a norm
∥ · ∥ is a matrix B that has rank ν and minimizes the norm of the difference
A−B.

Theorem 9.5.1. Let an m× n matrix A has rank r, and let A = UΣV ∗ be
its SVD, with σ1 ≥ σ2 ≥ . . . ≥ σr. Then

Aν =
ν∑

j=1

σjujv
∗
j

is a rank-ν approximation to A in the operator norm. Moreover, for ν < r
the error of the approximation

inf
B:rank(B)≤ν

∥A−B∥ = ∥A−Aν∥ = σν+1.

(For ν ≥ r, Aν = A.)
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Proof. Suppose that there is some matrix B with the rank ≤ ν, which
outperform Aν . Namely, suppose that ∥A − B∥2 < ∥A − Aν∥2 = σν+1.
Since the matrix B has rank ≤ ν, therefore its null-space W has dimension
≥ n− ν. For every vector in w ∈ W , we have

∥Aw∥ = ∥(A−B)w∥ < σν+1∥w∥.

On the other hand, if V is the linear subspace spanned by the first ν + 1
singular vectors of A, then we have that for every v ∈ V ,

∥Av∥ ≥ σν+1∥v∥.

Since the sum of the dimensions of W and V exceeds n, they must have a
non-zero vector in common. This gives a contradiction.

An analogous result holds also for the Frobenius norm.

9.6 Applications
9.6.1 Linear regression and pseudoinverse
Consider the linear regression problem Xb = y, where X is an m×n matrix.

If m > n and the data matrix X has the reduced SVD

X = Û Σ̂V ∗,

then

X∗X = V Σ̂∗Û∗Û Σ̂V ∗ = V Σ̂2V ∗,

where V is the orthogonal matrix, with V −1 = V ∗.
In particular we can write the normal equations X∗Xb = X∗y as

V Σ̂2V ∗b = V Σ̂U∗y,

and by mulitplying by V ∗ on the left:

Σ̂2V ∗b = Σ̂U∗y,

Assuming that all diagonal entries of Σ̂ are positive we can reduce the
system even further to

Σ̂V ∗b = U∗y,

and then the algorithm is simple:
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1. Calculate U∗y.

2. Solve Σ̂w = U∗y for w. (This is simple because Σ̂ is diagonal.)

3. Set x = V w.

The most work in this algorithm goes into calculating the singular value
decomposition. According to Trefethen and Bau, this method has some
advantages over other methods if some of the singular values of the matrix
X are small.

What if m > n? In this case the equation Xb = y has more than one
solution. To select one of them with some nice properties, one can use the
full decomposition X = UΣV ∗ and define the pseudoinverse X+ = V Σ+U∗,
where Σ+ is n×m matrix with

Σ+ =


σ−1
1 0 . . . 0

0 σ−1
2 . . . 0

. . . . . . . . . . . .
0 0 . . . 0


(In other words, all non-zero diagonal elements of Σ are inverted and the
matrix is also transposed.)

Then Σ+Σ = In and therefore X+X = In, so that X+ is the left inverse
of X. In particular we can calculate one of possible solutions as b = X+y.

9.6.2 Principal Component Analysis (PCA)
The singular value decomposition is often used in data analysis for dimension
reduction. The basic idea that we are trying to approximate a matrix of data
with a low-rank matrix.

Suppose X is the matrix of data. The rows of this matrix are data
points and the columns give values of various variables (also called features)
for these datapoints. For example, rows can correspond to different individ-
uals and columns to different characteristics of the individual. For another
example, rows can correspond to dates and the columns to different financial
stocks while the entries are the stock returns recorded on that day.

One statistical technique to analyze data X is called the principal com-
ponent analysis. It is essentially the SVD of matrix X.

If we write the reduced SVD of m × n matrix X: X = UΣV ⋆ then
the j-th column of matrix V is called the j-th principal component and its
elements are called the loadings of the the j-th component.
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The elements of the j-th column of matrix U are connected to the
“scores” of the j-th principal component for a particular observation. So
for example, σjUij is the score of the j-th component for i-th observation.

We can also write:

X = UΣV ∗ =

n∑
k=1

σku
(k)

(
v(k)

)∗
, (9.6)

where u(k) and v(k) are k-th columns of the matrices U and V , respectively.
In particular the scores of the k-th principal component can be calculated

as

σku
(k) = Xv(k),

which means that the vector of scores is a linear combination of columns of
X (“features”), with coefficients given by entries of the vector v(k)

In components, this can be written as

xij =
r∑

k=1

σkuikvjk

where i = 1, . . . ,m and j = 1, . . . , n.
Note that V is the matrix of eigenvectors of matrix X∗X which has

the meaning of the empirical covariance matrix for the data. Statistically
one can think about the first column V (i.e., the first eigenvector) as the
coefficients of the linear combination of variables that has the largest vari-
ance (that is, for which the quadratic form v∗X∗Xv achieves its maximum,
assuming that v has unit length. In other words this column gives the coeffi-
cients of the linear combination of characteristics with the largest variation
across individuals.

Similar interpretations can be given for other columns of matrix V .
Often for visualization purposes only the first two principal components

are used and the observation vector xi1, . . . xip is replaced with the scores
on the first two principal components: σ1Ui1 and σ2Ui2.

We also know that the best approximation to the matrix X with rank r
is given by

X = UΣV ∗ =
r∑

k=1

σku
(k)

(
v(k)

)∗
, (9.7)

where the sum in (9.6) is cut at r ≤ n. This is the basis for the dimension
reduction technique when X is replaced with the matrix of the scores for
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the first r components, that is with matrix whose columns are σku
(k), k =

1, . . . , r.
This technique is very popular. One example is the data on financial

stock returns. It turns out that the empirical covariance matrix exhibit
three important factors (which are principal components with large singular
values).

9.6.3 Face recognition
The SVD can be used for face recognition. This is one of the applications of
PCA. Currently, this method is less popular than methods based on neural
networks.

In order to use PCA for face recognition, face images are vectorized (that
is, an image is represented as a long vector of pixel values). Then a collection
of these vectors for a large number of individuals is put together as a matrix.
For example, let X be a matrix where columns represent individuals and rows
are pixels in an image.

After the SVD is performed on this matrix, we have as before:

xip =

r∑
k=1

σku
(k)
i v(k)p

where p stands for a person.
In this application, the vectors uki are the principal components, or

“eigenfaces”.
Note that the decomposition above means that the σkvp(k), k = 1, . . . , r

are coefficients in the expansion of the p-th column vector Xip (which is the
image of the person p) over the orthogonal basis given by eigenfaces u(k).

We can interpret the vector σkv(k)p , k = 1, . . . , r as the “signature” of the
individual p. These signatures are stored in a database. When a new face
image is presented, it is decomposed in the eigenface basis and compared
to the signatures in the database. If a sufficiently close match is found, the
face is recognized.

9.6.4 Image Processing
1. An SVD was suggested as a method for image compressing, however,

the standard technologies use different compressing algorithms. In
particular, JPEG uses the discrete cosine transform, which is a variant
of the Fast Fourier Transform.
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The SVD method is straightforward. An image can be represented as
3 matrices of pixels. Every matrix can be subjected to SVD and a
low-rank approximation computed. Then it is only necessary to retain
several largest singular values and the corresponding singular vectors.
This gives a significant compressing ratio.

2. The SVD can be used in removing static background from videos.
Videos can be converted to matrices by vectorizing each frame and
stacking them together. In this case the background is the low-rank
approximation to the matrix and can be removed by calculating the
low-rank approximation and subtracting it from the matrix.

9.6.5 Other applications
• The SVD has some application in continuous mechanics and in robotics

since it decomposes a matrix as a product of two rotations, both of
which can be accomplished without stress, and a stretching matrix.

• Eigenvalue decomposition is used in the spectral clustering algorithms.

9.7 Exercises
Exercise 9.7.1. Example 3.6 in Trefethen-Bau shows that if A is an outer
product of two vectors A = uvt, then ∥A∥2 = ∥u∥2∥v∥2, where ∥ · ∥2 denotes
both the 2-norm on vectors (the usual Euclidean norm) and the correspond-
ing induced operator norm on matrices.

Is the same true for the Frobenius norm, that is, is ∥A∥F = ∥u∥F ∥v∥F ?
Prove it or give a counterexample.
Exercise 9.7.2. Determine the SVDs of the following matrices (by hand cal-
culation):

(a)
[
3 0
0 −2

]
, (b)

[
2 0
0 3

]
, (c)

0 2
0 0
0 0

 , (d)
[
1 1
0 0

]
, (e)

[
1 1
1 1

]
.

(Note that the answers can be different up to some multiplication of columns
of U and V by ±1.)
Exercise 9.7.3. Determine the SVD of the following matrix (by hand calcu-
lation):

A =

[
1 1 0
0 1 1

]
.
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Exercise 9.7.4. Suppose A is an m × n matrix and B is the n × m ma-
trix obtained by rotating A ninety degrees clockwise on paper. Do A and
B have the same singular values? Prove that the answer is yes or give a
counterexample.
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Chapter 10

Further properties of
eigenvalues and singular
values

Reading for this Chapter

• Strang: Section 6.4, Chapter 7.

• Trefethen, Bau: Lectures 12, Chapter 5.

10.1 Condition Number
Let y = Ax, where A is an m×n matrix. In applications it is often important
to know whether small changes in input can lead to big changes in output,
and it is often useful to measure the size of the changes in relative terms.
Then we define a relative condition number at input x, as

κ(x) := sup
δx ̸=0

[∥A(x+ δx)−Ax∥
∥Ax∥

/
∥δx∥
∥x∥

]
= sup

δx ̸=0

[∥Aδx∥
∥δx∥

]
By definition of the operator norm we see that

κ(x) = ∥A∥ ∥x∥
∥Ax∥

.

Now sometimes we want a bound on the relative condition number which
would be independent of the input. Let us assume that A is a square non-
singular matrix.
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Then we have

∥x∥
∥Ax∥

=
∥A−1Ax∥
∥Ax∥

≤ ∥A−1∥.

Hence, we have κ(x) ≤ ∥A∥∥A−1∥.

Theorem 10.1.1. Let A be a square non-singular matrix and consider the
equation Ax = b. The problem of computing b, given x, has the relative
condition number

κ = ∥A∥∥x∥
∥b∥

≤ ∥A∥∥A−1∥,

with respect to perturbations of x. The problem of computing x, given b, has
the relative condition number

κ′ = ∥A−1∥ ∥b∥
∥x∥

≤ ∥A∥∥A−1∥,

with respect to perturbations of b.

Proof. We proved the first part above. For the second part, note that we
can re-write the problem of computing x given b as A−1b = x, and then we
can apply the first part.

We know that ∥A∥ = σ1(A) and ∥A−1∥ = 1/σn, where σ1(A) and σn(A)
are the largest and the smallest singular values of A. So we can write a
bound κ(x) ≤ σ1/σn.

The first part of this theorem can be easily generalized to non-square
matrices. Indeed, if the matrix A is m × n with m > n, then we can
replace A−1 in the arguments above with the pseudo-inverse A+, and then
k(x) ≤ ∥A∥∥A+∥ = σ1/σn.

The quantity σ1/σn is called the condition number of the matrix A. It
is a universal bound for the relative condition number κ(x) which is valid
for all inputs x ̸= 0.

In fact this number also controls the sensitivity of output to perturba-
tions in the matrix.

Theorem 10.1.2. Let b be fixed and consider the problem of computing
x = A−1b, where A is square and nonsingular. The relative condition number
of this problem with respect to perturbations in A is

κ = ∥A∥∥A−1∥ =
σ1(A)

σn(A)
.
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Proof. If we perturb A in the equation Ax = b, we find that

(A+ δA)(x+ δx) = b.

By using the equality Ax = b and dropping the second order term δAδx,
we find (δA)x + Aδx = 0, or δx = −A−1(δA)x. This implies that ∥δx∥ ≤
∥A−1∥∥δA∥∥x∥, which we can re-write as:

∥δx∥
∥x∥

≤ ∥A∥∥A−1∥∥δA∥
∥A∥

.

This shows that the relative condition number is bounded from above by
∥A∥∥A−1∥.

In fact it is possible to show that the bound is achieved for some δA.
We omit the proof of this fact. See the book by Trefethen and Bau for
details.

10.2 Rayleigh quotient
Rayleigh quotient is an important way to characterize eigenvalues as the
maximum of a quadratic form.

In order to motivate this property, note that the largest singular value
σ1(A) equals the norm of the matrix A, which is the maximum of the quo-
tient

∥Ax∥
∥x∥

.

over all possible non-zero x. The corresponding left singular vector is the
vector at which this maximum is achieved. The square of this expression
can be rewritten as

∥Ax∥2

∥x∥2
=

(Ax,Ax)

(x, x)
=

(x,A∗Ax)

(x, x)
.

Hence the square of the largest singular value is the maximum of the
expression (x,A∗Ax) given that (x, x) = 1.

The Rayleigh quotient is a modification of this idea, which focuses on
eigenvalues instead of singular values. By definition, the Rayleigh quotient
of a vector x is the ratio:

R(x) =
(x,Ax)

(x, x)
.
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Theorem 10.2.1 (Rayleigh-Ritz). If a symmetric matrix A has eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn, then λ1 and λn are the maximum and the minimum,
respectively, of the Rayleigh quotient R(x) over all x ̸= 0.

Proof. We need to check that

λn(x, x) ≤ (x,Ax) ≤ λ1(x, x) (10.1)

holds and that the bounds can be achieved by a suitable choice of x ̸= 0.
The inequalities hold because A = UΛU∗ and so

(x,Ax) = (U∗x,ΛU∗x) = λ1y
2
1 + . . .+ λny

2
n.

where y = (y1, . . . , yn)
∗ = U∗x. The last expression is between λn∥y∥2 and

λ1∥y∥2 and we know that ∥y∥2 = ∥x∥2.
It is also clear that the bounds in the inequalities (10.1) are achieved

if we set x equal to the eigenvectors corresponding to eigenvalues λ1 and
λn.

For example, for the largest eigenvalue we have

λ1 = max
x ̸=0

(x,Ax)

(x, x)
.

Alternatively we can write:

λ1 = max
x:∥x∥=1

(x,Ax),

and the maximum is achieved on an eigenvector of A that corresponds to
the eigenvalue λ1.

Note that if Q(x) is the quadratic form associated to the symmetric
matrix A, then this gives us ability to find the maximum of Q(x) on the set
of all vectors x that have unit length.

Similarly, for the smallest eigenvalue we have:

λn = min
x:∥x∥=1

(x,Ax),

and again the minimum is achieve at the eigenvector that corresponds to
the smallest eigenvalue λn.

Corollary 10.2.2. The diagonal entries of any symmetric matrix are be-
tween λ1 and λn.
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Proof. This is a consequence of Theorem 10.2.1 because the diagonal entry
aii = R(ei), where ei = (0, . . . , 1, . . . , 0) is the i-th coordinate vector.

Characterization of the largest and smallest eigenvalues as the maximum
and minimum, respectively, of a quadratic form can be extended to interme-
diate eigenvalues. Let Vk−1 be the space spanned by orthonormal system of
eigenvectors u1, u2, . . . uk−1 that correspond to eigenvalues λ1, λ2, . . . , λk−1.
Then,

λk = max
x ̸=0,x⊥Vk−1

R(x).

In order to see this, note that the space V ⊥
k−1 orthogonal to Vk−1 is invariant

under the transformation A and spanned by the eigenvectors corresponding
to the eigenvalues λk, . . . , λn. Then the desired result can be obtained by
restricting the linear transformation A to the linear space V ⊥

k−1 and applying
the Rayleigh-Ritz theorem to this restriction.

For example, the second eigenvalue of A gives the following maximum:

λ2 = max
x ̸=0,x⊥u1

(x,Ax)

(x, x)
,

where u1 is the first eigenvector corresponding to λ1. Alternatively we can
write this expression as

λ2 = max
x:∥x∥=1,x⊥u1

(x,Ax).

The maximum is achieved at u2, an eigenvector that corresponds to λ2.
A useful extension of this result is the Courant-Fisher Theorem. It says

that instead of explicitly choosing Vk as the span of the first k eigenvectors,
one can solve a minmax problem.

Theorem 10.2.3 (Courant-Fisher). If a symmetric matrix A has eigenval-
ues λ1 ≥ λ2 ≥ . . . ≥ λn, then for 1 ≤ k ≤ n,

λk = min
Vk−1

max
x ̸=0,x⊥Vk−1

R(x),

where the minimization is over all k − 1 dimensional subspaces Vk−1, and

λk = max
Vn−k

min
x ̸=0,x⊥Vn−k

R(x),

where the maximization over all n− k dimensional subspaces Vn−k.
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The difference (and the benefit) of this theorem from our previous consid-
erations is that it does not define Vk−1 as the span of eigenvectors u1, . . . , uk−1

but allows Vk−1 to run over all possible k − 1 subspaces and chooses the
“worst” possible subspace. The worst here means that it leads to the small-
est of the maximal Rayleigh ratios. (The second expression is similar but
the maximum and minimum are exchanged in this expression.)

The Courant-Fisher Theorem allows proving several important theoret-
ical results. One of the most useful is a theorem by Hermann Weyl. Let us
write λj(X) to denote the eigenvalues of an Hermitian matrix X arranged
in decreasing order.

Theorem 10.2.4 (Weyl). Let A and B be two Hermitian n × n matrices.
For each k = 1, 2, . . . , n, we have

λk(A) + λn(B) ≤ λk(A+B) ≤ λk(A) + λ1(B)

Proof. For every vector x, we have

λ1(B) ≥ xtBx

xtx
≥ λn(B).

Hence

λk(A+B) = min
Vk−1

max
x ̸=0,x⊥Vk−1

xt(A+B)x

xtx

= min
Vk−1

max
x ̸=0,x⊥Vk−1

[xtAx
xtx

+
xtBx

xtx

]
≤ min

Vk−1

max
x ̸=0,x⊥Vk−1

[xtAx
xtx

+ λ1(B)
]
= λk(A) + λ1(B).

The lower bound can be established similarly.

Corollary 10.2.5. If matrix B is non-negative definite, then all eigenvalues
of A increase when we add B:

λk(A+B) ≥ λk(A)

Figure 10.1

Another impor-
tant and surprising
result is as follows.
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Theorem 10.2.6 (in-
terlacing of eigenval-
ues I). If the matrix
B is non-negative

definite and has rank 1, then

λk+1(A) ≤ λk+1(A+B) ≤ λk(A),

where k = 0, . . . , n− 1, with the convention that λ0(A) = +∞.

In other words the rank-one perturbation of matrix A cannot move the
internal eigenvalues too much. This is illustrated in Figure 10.1.

Proof. Note that λk(A+ B) ≥ λk(A) holds by Corollary 10.2.5, so we only
need to prove the other inequality.

By the eigenvalue decomposition, every non-negative definite symmetric
rank 1 matrix can be written as a outer product of a vector with itself. So let
B = vvt. For 1 ≤ k ≤ n− 1 we write the following sequence of inequalities
(where x ̸= 0 always):

λk(A) = min
Vk−1

max
x⊥Vk−1

xt(A+ vvt − vvt)x

xtx

≥ min
Vk−1

max
x⊥Vk−1,x⊥v

xt(A+B − vvt)x

xtx

= min
Vk−1

max
x⊥(Vk−1⊕⟨v⟩)

xt(A+B)x

xtx

≥ min
Vk

max
x⊥Vk

xtAx

xtx
= λk+1(A+B).

The inequality in the second line of this display holds because we added a
new constraint to the maximization problem. The second inequality holds
because in the constraint we used arbitrary Vk instead of those Vk that
required to include v.

A closely related result is as follows.

Theorem 10.2.7 (interlacing of eigenvalues II). Let A be a Hermitian n×n
matrix, and let A′ be its (n− 1)× (n− 1) upper-left principal submatrix.

λ1(A) ≥ λ1(A
′) ≥ λ2(A) ≥ λ2(A

′) ≥ . . . ≥ λn−1(A
′) ≥ λn(A).
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(In fact the result holds for any A′ which by removing k-th column and
k-th row from A, where 1 ≤ k ≤ n.)
Example 10.2.8. The matrix

A =

 2 −1 0
−1 2 −1
0 −1 2


has eigenvalues λ1(A) = 2+

√
2, λ2(A) = 2, and λ3(A) = 2−

√
2, and matrix

A′ =

[
2 −1
−1 2

]
has eigenvalues λ1(A

′) = 3 and λ2(A
′) = 1, and as the theorem claims, we

have:

2 +
√
2 ≥ 3 ≥ 2 ≥ 1 ≥ 2−

√
2.

It is also interesting that if the eigenvalues of n× n symmetric matrices
A and B are known, and n is large, then one can calculate approximately
the distribution of eigenvalues of the matrix A + UBU∗, where U is a ran-
dom unitary matrix. This was one found recently (around 20 years ago) in
research that comprised the study of random matrices and results from a
field in functional analysis called free probability theory.

10.3 Power iteration for calculation of the largest
eigenvalue

Let A be an n × n symmetric matrix. The idea of power iteration is that
the linear transformation A has the largest stretch in the direction of the
eigenvector v1 corresponding to the eigenvalue λ1 that has the largest ab-
solute value. So if we start with an arbitrary vector x and apply An to this
vector, then the result will be close to a multiple of eigenvector v1.

This is the basis for the following algorithm called the “power iteration”.

• Start with a unit vector v(0). Let λ(0) = (v(0))∗Av(0).

• For k = 1, 2, . . ., repeat the following steps until the change in λ(k) is
small enough.

1. Apply A: w = Av(k).
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2. Normalize: v(k) = w/∥w∥.
3. Calculate the Rayleigh quotient: λ(k) = (v(k))∗Av(k).

Theorem 10.3.1. Let A be an n× n real symmetric matrix with eigenval-
ues λ1, . . . , λn and a corresponding orthonormal system of real eigenvectors
q1, . . . , qn. Suppose that |λ1| > |λ2| ≥ |λn| ≥ 0 and q∗1v

(0) ̸= 0. Then, as
k → ∞,

∥v(k) − (±q1)∥ = O
(∣∣λ2

λ1

∣∣k),∣∣λ(k) − λ1

∣∣ = O
(∣∣λ2

λ1

∣∣2k).
The ± sign means that at each step k, one or the other choice of sign is to
be taken, and then the indicated bound holds.

Note that convergence rate is 2k in the second bound.

Sketch of proof. We expand v0 in the basis of eigevectors: v(0) = a1q1 +
a2q2 + . . . anqn, where a1 = qt1v

(0) ̸= 0 by assumption. Vector v(k) is a
multiple of Akv(0), so for some constants ck we have:

v(k) = ck(a1λ
k
1q1 + . . .+ anλ

k
nqn)

= ck(a1λ
k
1q1 + . . .+ anλ

k
nqn)

cka1λ
k
1

(
q1 +

a2
a1

(λ2

λ1
)kq2 . . .+

an
a1

(λn

λ1
)kqn

)
.

The first claim of the lemma follows from this identity and the fact that
both v(k) and q1 have the unit length.

The second claim from the first one after the following estimate is proved:
as x → q1,

∥R(x)−R(q1)∥ = O(∥x− q1∥2).

For the proof of this statement, see the Trethefen-Bau book.

10.4 Inverse iteration method
The power iteration method is suitable for calculating the largest eigenvalue
and the corresponding eigevector. What if we want to find other eigenvalues
and eigenvectors?
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For the smallest eigevalue we can do a simple adjustment and we get
the inverse iteration method. Namely, in step 1, instead of calculating w =
Av(k), we calculate w = A−1v(k). Then, the sequence of vectors v(1), v(2), . . . ,
will converge to the eigenvector which corresponds to the largest eigenvalue
of A−1, which is 1/λn. And the Rayleigh quotient R(v(k)) converges to λn.

From the technical viewpoint, we usually do not invert A to calculate
w = A−1v(k) but rather solve the equation Aw = v(k) for w. All other steps
are the same as in the original power iteration method.

This method can be generalized to estimation of other eigenvalues, pro-
vided that we have an estimate µ which is closer to λk than to other eigen-
values. Then the largest (in absolute value) eigenvalue of (A − µI)−1 is
(λk − µ)−1, and we can use w = (A− µI)−1v(k) as the first iteration step of
the algorithm. This is the inverse iteration with a shift.

In fact this method can even be used to improve the convergence of the
power method for the largest eigenvalue, since it can potentially amplify the
distance of the largest eigenvalue from other eigenvalues.

10.5 QR method for eigenvalue calculation
The QR method for eigenvalue calculation is a very interesting method for
finding eigenvalues which is based on the following result.
Theorem 10.5.1. Suppose that A = QR is the QR factorization of a real
symmetric matrix A, and let A1 = RQ. Then A1 is real symmetric and it
has the same eigenvalues as A.
Proof. Since Q is orthogonal, we can express R as R = Q∗A. If we plug
this expression in the definition of A1 we find A1 = Q∗AQ which implies the
claims of the theorem.

Then we can define matrices Ak recursively (with A = A0). For k =
1, 2, . . . , if Ak−1 = QkRk, then we define

Ak = RkQk = Q∗
kAk−1Qk.

For example A = A0 = Q1R1 and so A1 = R1Q1 = Q∗
1AQ1. Then

A1 = Q2R2,

A2 = R2Q2 = Q∗
2A1Q2 = Q∗

2Q
∗
1AQ1Q2,

. . .

Ak = RkQk = Q∗
kAk−1Qk = Q∗

kQ
∗
k−1 . . . Q

∗
1AQ1 . . . Qk−1Qk,

. . . ,
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By the previous theorem all Ak are real symmetric and have the same
eigenvalues as A.

A useful identity that follows from the definitions is that Ak−1Qk =
QkAk.

What we want to show is that if eigenvalues of A are all positive
and distinct, then Ak converges to a diagonal matrix. In particular,
the diagonal entries of Ak converge to the eigenvalues of A.

We will not prove this statement in detail but give some ideas why it is
true.

Note that we have

Ak = (Q(k))∗AQ(k),

where Q(k) = Q1Q2 . . . Qk. Define also

R(k) = RkRk−1 . . . R1

Theorem 10.5.2. The matrices Q(k) and R(k) give the QR decomposition
of the k-th power of the matrix Ak,

Ak = Q(k)R(k).

Proof. For k = 1, this simply means that A = QR. For large k, we proceed
by induction. Suppose that the we already know that Ak−1 = Q(k−1)R(k−1).
Multiply this equality by A on the left and use the identity Ak−1Qk = QkAk

AQ(k−1) = A0Q1Q2 . . . Qk−1 = Q1A1Q2 . . . Qk−1

= Q1Q2A2 . . . Qk−1

. . .

= Q1Q2Qk−1Ak−1 = Q(k−1)QkRk

This implies that Ak = Q(k)R(k).

This theorem implies that the columns of Q(k) form the basis of the
column space of Ak obtained as a result of Gram-Schmidt orthogonalization.

We can write Ak = UΛkU∗, where U is the matrix of eigenvectors of A
and Λ is the diagonal matrix of eigenvalues. If the eigenvalues of A are all
positive and distinct, then the columns of matrix Ak are linear combinations
of eigenvectors ui,

b1λ
k
1u1 + . . .+ bnλ

k
1un.
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Moreover, if we assume λ1 > λ2 > . . . > λn, then all columns of Ak, includ-
ing the first one, are close to the vectors proportional to the eigenvector u1.
Hence the first column of Q(k) is also very close to u1 The idea is that after
orthogonalization, the second column of Q(k) will be close to the second
eigenvector u2, and so on.

Indeed, the second flag space V2, spanned by the first and the second
columns of Ak, is close to the space V̂2 spanned by the first and the second
eigenvectors u1 and u2. So, the second column of the matrix Q(k) obtained
from the orthogonalization of the flag V1 ⊂ V2 will be close to the vector u2.
(This is because the first column of Q(k), as was just argued, is close to u1

and u2 is the only vector in V̂2 orthogonal to u1. )
In summary, the orthogonal matrix Q(k) will be close to the orthogonal

matrix of eigenvectors of U and therefore (Q(k))∗U ≈ I. Then we have the
eigenvalue decomposition A = UΛU∗, and so we can write:

Ak = (Q(k))∗AQ(k) = (Q(k))∗UΛU∗Q(k) ≈ Λ.

That is, Ak is close to Λ.
The detailed implementation of this plan is omitted.
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Chapter 11

Covariances and Multivariate
Gaussian Distribution

11.1 Covariance of a linearly transformed vector
Suppose x = (x1, . . . , xm)∗ be a column vector of random variables xi. Then
the covariance matrix C of x is the m×m matrix of covariances of the r.v.’s
xi:

Cij = Cov(xi, xj)

We will denote this matrix by Var(x). For example, if xi are i.i.d random
variables with variance σ2, then the covariance matrix is a multiple of the
identity matrix:

C ≡ Var(x) = σ2Im×m

Obviously, the covariance matrix is symmetric. It has also another im-
portant property. First, let us define a symmetric positive definite matrix
as a symmetric matrix that has the following property: (x,Ax) = x∗Ax > 0
for all real vectors x ̸= 0. If a symmetric matrix (x,Ax) ≥ 0 for all x then
it is called non-negative definite. (Similar concepts can be defined more
generally for hermitian matrices.)

Theorem 11.1.1. If v is a real random vector, then its covariance matrix
C is non-negative definite.

Proof. It is clear that the covariance matrix is symmetric. Let x be a non-
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random vector. Then,

Var(x∗v) = Var
( m∑

i=1

xivi

)
=

∑
i,j

xiCov(vi, vj)xj

= x∗Cx = (x,Cx)

However, Var(x∗v) ≥ 0 by properties of variance. Hence, (x,Cx) ≥ 0 for all
x and therefore the matrix C is non-negative definite.

The proof also shows that the matrix C is positive definite unless there
is a linear combination of components of vector v that has zero variance.

Theorem 11.1.2. Let x be a random m-vector with covariance matrix C,
and suppose y = Ax, where A is an n ×m non-random matrix. Then, the
covariance matrix of vector y is ACA∗.

Proof. We calculate:

Cov(yi, yj) = Cov
( m∑

k=1

Aikxk,

m∑
l=1

Ajlxl

)
=

m∑
k=1

m∑
l=1

AikAjlCov(xk, xl)

=
m∑
k=1

m∑
l=1

AikCklAjl

= (ACA∗)ij

Example 11.1.3 (Linear regression). Consider the linear statistical model

y = Xβ + ε, (11.1)

where y is an m-vector, X is a non-random m×n matrix, β is a non-random
n-vector, and ε is a random m-vectors. In the statistical setting y are m
observations of a dependent variable, the columns of X are m observations
of n independent (or explanatory) variables, β are unknown coefficients and
ε are unknown error terms.

Assume that εi are i.i.d. with zero mean and variance σ2, which we as-
sume known for simplicity. The linear regression method gives the following
estimator of β:

β̂ = (X∗X)−1X∗y. (11.2)
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This estimator is a random vector since y is a random vector. What is its
covariance matrix?

Let us plugin equation (11.1) into (11.2):

β̂ = (X∗X)−1X∗(Xβ + ε)

= β + (X∗X)−1X∗ε.

The first term is non-random so it does not affect any of the covariances.
So it is enough to calculate the covariance matrix of the second term. By
applying Theorem 11.1.2 and using the fact that Var(ε) = σ2Im×m, we get

Var(β̂) = (X∗X)−1X∗X(X∗X)−1

= σ2(X∗X)−1.

What about the variance of the fitted values ŷ?
For fitted values we have the formula:

ŷ = X(X∗X)−1X∗y

= X(X∗X)−1X∗(Xβ + ε)

= Xβ +X(X∗X)−1X∗ε.

So by applying Theorem 11.1.2, we find:

Var(ŷ) = X(X∗X)−1X∗(σ2I)X(X∗X)−1X∗

= σ2X(X∗X)−1X∗

This formula can be used to write the variance of individual terms of Var(ŷ).

11.2 Eigenvalue and Cholesky factorizations of a
covariance matrix

Theorem 11.1.2 implies that if a random vector x has an identity covariance
matrix C = I, then the covariance matrix of Ax is C = AA∗.

Sometimes we are given a matrix C and want to find such A that C =
AA∗. For example, one of the ways to generate a multivariate random
Gaussian variable with m components and covariance matrix C is to generate
m independent Gaussian variables with unit variance and multiply a vector
of these variables by A. It is known that the resulting variable is Gaussian
and Theorem 11.1.2 will ensure that it has the correct covariance matrix.
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There are many factorizations C = AA∗. One is the eigenvalue factor-
ization. Since C is symmetric, it has an eigenvalue decomposition:

C = UΛU∗,

where U is an orthogonal matrix of eigenvectors and Λ is the diagonal matrix
of eigenvalues. Note that all eigenvalues of a non-negative definite matrix
must be non-negative. Indeed, if λ < 0 is a negative eigenvalue of C with
eigenvector u, then u∗Cu = −λ∥u∥2 < 0, which contradicts the assumption
that C is non-negative.

So, in particular we can take a square root of Λ. The result is the matrix
Λ1/2 that has

√
λi on its diagonal. Then we can use matrix A = UΛ1/2 to

factorize C as C = AA∗.
Another factorization is particularly popular in practice because it is

very simple to calculate.

Definition 11.2.1. The Cholesky factorization of a self-adjoint matrix C is
a decomposition

C = RR∗,

where R is a lower-triangular matrix.

We have already considered this factorization previously in Section 8.1
and know that for positive definite matrices the Cholesky factorization al-
ways exists. (It is also unique, see Theorem 23.1 in Bao - Trefethen.)

11.3 Multivariate Gaussian distribution
Definition 11.3.1. Let µ be an m-vector and Σ a positive definite m ×
m real symmetric matrix. The multivariate normal random variable with
parameters µ and Σ is a random m-vector X with the following density
function:

fX(x) =
1

(2π)m/2(detΣ)1/2
exp

[
− 1

2
(x− µ)∗Σ−1(x− µ)

]
(11.3)

The density is called the Gaussian density and it is ubiquitous in statis-
tics and in statistical physics.

Remark 1: here and in the following we use the convention that random
variables are denoted by upper case roman letters, while their realizations
by lower case letters. This is in some conflict with our previous practice
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when we used uppercase letters to denote matrices and lowecase letters to
denote vectors.

Remark 2: One can define a multivariate normal distribution in a more
general sense, when Σ may have a non-trivial null-space. Then one defines
K = Σ+, the pseudo-inverse of matrix Σ and the density is

fX(x) =
(detK)1/2

(2π)m/2
exp

[
− 1

2
(x− µ)∗K(x− µ)

]
, (11.4)

if x − µ ∈ Range(K) and fX(x) = 0 if x − µ ∈ Null(K). This is useful for
describing singular normal random vectors, for which the variances of some
linear combinations of the components of X are zero.

The matrix K = Σ+ is often called the concentration matrix. It useful
even if Σ is invertible and Σ+ = Σ−1.

Theorem 11.3.2. The function fX(x) in (11.3) is a valid probability density
function and the expectation and variance of the random vector X are µ and
Σ, respectively.

Proof. Let V be a random m-vector whose components are independent
standard normal random variables. By independence, its density is the
product of the densities of the components:

fV (v) =

m∏
i=1

1√
2π

exp
(
− 1

2
v2i

)
=

1

(2π)m/2
exp

(
− 1

2
v⋆v

)
Now let Σ = RR∗ be the Cholesky factorization of Σ, and let X =

µ+RV . Then EX = µ and by Theorem 11.1.2, Var(X) = RIm×mR∗ = Σ.
In order to calculate the density function for X, we note that V =

(R)−1(X − µ), and therefore,

−1

2
v∗v = −1

2
(x− µ)∗(R∗)−1R−1(x− µ)

= −1

2
(x− µ)∗(RR∗)−1(x− µ)

= −1

2
(x− µ)∗Σ−1(x− µ).

Next we note that the transformation v = R−1(x − µ) is one-to-one and
linear, and that the matrix of derivatives for this transformation is

∂v(x)

∂x
:=

[
∂vi(x)

∂xj

]
i,j=1,...,m

= R−1.
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Hence the Jacobian of this transformation is | detR−1| = | detR|−1. On the
other hand detΣ = detR∗ detR = | detR|2. It follows that the Jacobian of
the transformation v = R−1(x− µ) is (detΣ)−1/2.

The by the general theorem about the density function for transformed
random variables, we find that the density function of the random vector X
is

fX(x) =
1

(2π)m/2(detΣ)1/2
exp

[
− 1

2
(x− µ)∗Σ−1(x− µ)

]
and this completes the proof of the theorem.

Theorem 11.3.3. Let X be a multivariate normal m-vector with zero mean
and variance Σ. Then, for every non-random m-vector v:

E exp(v∗X) = exp
(1
2
v∗Σv

)
Before doing the general proof, let us look at the one-dimensional case

when X is a usual zero mean normal random variable with variance σ2. In
this case, v is a scalar and we can calculate:

E exp(vX) =
1√
2πσ2

∫ ∞

−∞
exp

(
vx− x2

2σ2

)
dx

=
1√
2πσ2

∫ ∞

−∞
exp

(
− (x− σ2v)2 − σ4v2

2σ2

)
dx

= exp
(σ2v2

2

) 1√
2πσ2

∫ ∞

−∞
exp

(
− (x− σ2v)2

2σ2

)
dx

= exp
(σ2v2

2

)
,

where the last integral is computed by the change of variable y = x− σ2v.

Proof. We need to calculate the multiple integral

E exp(v∗X) = c

∫
Rm

dx exp
[
− 1

2
x∗Σ−1x+ v∗x

]
, (11.5)

where

c =
1

(2π)m/2(detΣ)1/2
.
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Let Σ−1 = QΛQ∗ be the eigenvalue decomposition of Σ−1 with an orthogo-
nal matrix Q and a diagonal positive definite matrix Λ with diagonal entries
(λ1, . . . λm). Define y = Q∗x. Since | detQ| = 1, the Jacobian of the trans-
formation is 1 and the integral (11.5) can be written as:

c

∫
Rm

dy exp
[
− 1

2
y∗Q∗Σ−1Qy + v∗Qy

]
= c

∫
Rm

dy exp
[
− 1

2
y∗Λy + u∗y

]
,

where u = Q∗v.
Note that in coordinates

−1

2
y∗Λy + u∗y =

m∑
i=1

[
− 1

2
y2i λi + uiyi

]
,

so the multiple integral splits into a product of one-dimensional integrals,
which we have already done. (We need only to set σ2

i = 1/λi.) So we
calculate the integral as

c

m∏
i=1

√
2πλ

−1/2
i exp

[ u2i
2λi

]
Product of λi equals detΛ = detΣ−1. Hence,

c

m∏
i=1

√
2πλ

−1/2
i = c(2π)m/2(detΣ)1/2 = 1.

And
m∏
i=1

exp
[ u2i
2λi

]
= exp

[1
2
(Q∗v)∗Λ−1Q∗v

]
= exp

[1
2
v∗QΛ−1Q∗v

]
= exp

[1
2
v∗Σv

]

Essentially this result gives the moment-generating and characteristic
functions of the multivariate normal distribution.
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Corollary 11.3.4. Let X be a multivariate normal m-vector with zero mean
and variance Σ, and let t = [t1, . . . , tm]∗ be a vector in Rm. Then the moment
generating function of X is

mX(t) := Eet
∗X = exp

(1
2
t∗Σt

)
,

and the characteristic function of X is

φX(t) := Eei(t
∗X) = exp

(
− 1

2
t∗Σt

)
By using the moment-generating function, we can calculate the moments

of the multivariate normal distribution. The following result was proved by
Leon Isserlis in 1918. Recently, it was made popular by particle physicists
under the name Wick’s theorem. The physicists used it in the perturbative
Quantum Field Theory and Statistical Field Theory.

Theorem 11.3.5 (Wick’s theorem). Let X = (xi) be a multivariate normal
m-vector with zero mean and variance Σ. Then,

E
(
xi1xi2 . . . xik

)
=

∑
Σab . . .Σyz,

where the sum is over all different pairings (ab), . . . , (yz) of the set of indices
{i1, i2, . . . , ik}.

An example should make this statement more clear. For two indices, we
simply have E(xixj) = Σij . For four indices, we have:

E(xixjxkxl) = ΣijΣkl +ΣikΣjl +ΣilΣjk.

Proof of Theorem 11.3.5. By a well-known result, we can write the moment
as the multiple derivative of the moment generating function evaluated at
zero:

E
(
xi1xi2 . . . xik

)
=

∂k

∂ti1 . . . ∂tik
mX(t)

∣∣∣
t=0

=
∂k

∂ti1 . . . ∂tik
exp

(1
2
t∗Σt

)∣∣∣
t=0

Consider first the derivative with respect to ti1 . By the chain rule it gives( m∑
j=1

Σi1jtj

)
exp

(1
2
t∗Σt

)
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Further differentiations will act either on the sum or on the exponential. If
they act on the exponential they generate new sums of the similar form as
a factor. If they act on the sum, they generate as scalar factor.

Note, however, that one of the further differentiations must act on the
sum. Otherwise, the evaluation t = 0 will set the result to zero. Let it be
differentiation with respect to tis . Then we have a pairing of i1 with is and
this pairing results in a factor Σi1is .

Quite similar we see that every differentiation either generate a new sum
or is paired with a previous differentiation to reduce one of these sums to a
scalar.

Let us accept without proof two facts. First, that a linear transformation
of a multivariate normal random vector is a multivariate normal, although
perhaps in the generalized sense with the density as in (11.4). The second
is that a multivariate normal distribution is completely determined by its
mean and variance (even if the distribution is singular, in which case one
should use A = Σ+, the pseudo-inverse of Σ). Then, we have the following
theorem.

Theorem 11.3.6. Let X be a random m-vector with the normal distribution
and let EX = µ, Var(X) = Σ. Suppose that B is an k ×m matrix and b is
a (non-random) k-vector. Then Y = BX + b has the normal distribution,
and

EY = b+Bµ,

VarY = BΣB∗.

Proof. This result follows from the two facts that we stated before the the-
orem, and the calculation of the expectation and variance. In particular,
variance can be computed by formula in Theorem 11.1.2.

A consequence of this theorem is that the marginal distributions of the
multivariate normal vector are normal.

Theorem 11.3.7. Let X be a random m-vector with the normal distribution
and let EX = µ, Var(X) = Σ. Suppose X = (X1, X2)

∗, where X1 is a k-
vector with k < m, and suppose µ = (µ1, µ2), where µ1 is a k-vector, and

Σ =

[
Σ11 Σ12

Σ21 Σ22,

]
where Σ11 is a k× k matrix. Then X1 is normally distributed k-vector with
mean µ1 and covariance matrix Σ11.
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Proof. This result follows from Theorem if we take b = 0 and

B = [Ik×k, 0k×(m−k)],

that is B is a k × m matrix that consists of the k × k identity matrix
followed by m−k columns of zeros. Then X1 = BX and a calculation gives
the expectation and variance of X1 stated in the corollary.

We can also derive a formula for conditional distributions. Recall that if
X1 and X2 are two random variables with the joint density fX1,X2(x1, x2),
then the conditional density of X1 given X2 = x2 is defined as

fX1|X2
(x1|x2) =

fX1,X2(x1, x2)

fX2(x2)
,

where fX2(x2) is the marginal density of X2. The conditional mean and
variance of X1 given X2 = x2 are calculated as mean and variance with
respect to the conditional density fX1|X2

(x1|x2).
It turns out that the conditional density of a normal multivariate distri-

bution is also normal and there are nice formulas for the conditional expec-
tation and variance.

Theorem 11.3.8. Assume the notation of theorem 11.3.7 and let Σ22 be
non-singular. Then the conditional distribution of X1 given X2 is normal
with mean

µ1|2 = µ1 +Σ12Σ
−1
22 (X2 − µ2),

and variance

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21.

Remark 1: The theorem is actually also valid for singular Σ22 if one uses
the pseudo-inverse Σ+

22 instead of Σ−1
22 .

Proof. In principle, the calculation of the conditional density is straightfor-
ward from the definition. If random vector X = [X1, X2]

∗ and its value is
x = [x1, x2]

∗, then

fX1|X2
(x1|x2) ∝ exp

(
(x− µ)∗Σ−1(x− µ)− (x2 − µ2)

∗Σ−1
22 (x2 − µ2)

)
∝ exp

(
(x− µ)∗Σ−1(x− µ)

)
.
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where symbol ∝ means “proportional to” and the coefficient of proportion-
ality does not depend on x1. Then it remains to invert the block matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22,

]
and complete the square so that the result has the form

fX1|X2
(x1|x2) ∝ exp

(
(x1 − µ1|2)

∗Σ−1
1|2(x1 − µ1|2)

)
This is possible to do and there are formulas for the inversion of the 2 × 2
block matrix Σ, which are called Schur’s complement formulas. However, we
will use only the fact that the resulting conditional density is normal and
calculate the conditional expectation µ1|2 and variance Σ1|2 in a different
way.

First, X1 and X2 are two random vectors, define the covariance of these
vectors as a matrix C = Cov(X1, X2) with entries

Cij = Cov
(
(X1)i, (X2)j

)
,

where (X1)i and (X2)j are the i-th and j-th components of the vectors X1

and X2, respectively.
Let Z = X1 +AX2, where A = −Σ12Σ

−1
22 . Then,

Cov(Z,X2) = Cov(X1, X2) + Cov(AX2, X2)

= Σ12 − Σ12Σ
−1
22 Σ22 = 0.

So Z and X2 are uncorrelated. (In fact, A was chosen precisely to ensure
this property.) Crucially, for normal random variables this implies that the
variables are also independent. It follows that

E(X1|X2) = E(Z −AX2|X2) = E(Z|X2)−AX2

= EZ −AX2 = µ1 +Aµ2 −AX2,

and this gives the desired formula for the conditional expectation.
For the conditional variance we calculate,

Var(X1|X2) = Var(Z −AX2|X2)

= Var(Z|X2) + Var(AX2|X2)− Cov(Z,X2)A
∗ −ACov(X2, Z).

The second term is equal to zero because AX2 is not random given X2. The
third and fourth term are equal to zero because Z and X2 are independent.
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Finally, the first term equals to the unconditional variance Var(Z) again
because Z and X2 are independent. Therefore,
Var(X1|X2) = Var(Z) = Var(X1 +AX2)

= Var(X1) +AVar(X2)A
∗ + Cov(X1, X2)A

∗ +ACov(X2, X1)

= Σ11 +Σ12Σ
−1
22 Σ22Σ

−1
22 Σ21 − 2Σ12Σ

−1
22 Σ21

= Σ11 − Σ12Σ
−1
22 Σ21

These formulas is also possible to write in terms of the concentration
matrix. Let

K = Σ−1 =

[
K11 K12

K21 K22

]
.

Then for the conditional distribution of X1 given X2, we have formulas:
µ1|2 = E(X1|X2) = µ1 −K−1

11 K12(X2 − µ2)

K1|2 = Var(X1|X2)
−1 = K11.

This formulas can be obtained by manipulating formulas that express K11,
K12, and K22 in terms of Σ11, Σ12, and Σ22.
Example 11.3.9. Consider a 3-dimensional normal random vector X = [X1, X2, X3]

∗

with zero mean and covariance matrix

Σ =

1 1 1
1 2 1
1 1 2

 .

Then, we can calculate the concentration matrix

K = Σ−1 =

 3 −1 −1
−1 1 0
−1 0 1

 .

The marginal distribution of (X2, X3) has the covariance and concentra-
tion matrices

Σ(23) =

[
2 1
1 2

]
and K(23) =

(
Σ(23)

)−1
=

1

3

[
2 −1
−1 2

]
The conditional distribution of (X1, X2) given X3 has the concentration and
covariance matrices

K(12|3) =

[
3 −1
−1 2

]
and Σ(12|3) =

(
K(12|3)

)−1
=

1

2

[
1 1
1 3

]
.

Simlarly, Var(X1|X2, X3) = 1/K11 = 1/3 and so on.
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11.4 Exercises
Exercise 11.4.1. Suppose (X,Y ) is a bi-variate normal vector with µX =
µY = 0, standard deviations σX = σY = 1, and correlation ρ = 1/2. (Recall
that ρ is defined as ρ = σXY /(σXσY ).)

Find P(Y > 0|X = 1).
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