$\mathrm{LA}_{\mathrm{E}} \mathrm{Xsubmissions}$ are mandatory. The template for this problem can be found on the Piazza resource page for this course.

Problem 1

Example 3.6 in Trefethen-Bau shows that if A is an outer product of two vectors $A=u v^{t}$, then $\|A\|_{2}=\|u\|_{2}\|v\|_{2}$, where $\|\cdot\|_{2}$ denotes both the 2-norm on vectors (the usual Euclidean norm) and the corresponding induced operator norm on matrices.

Is the same true for the Frobenius norm, that is, is $\|A\|_{F}=\|u\|_{F}\|v\|_{F}$? Prove it or give a counterexample.

Solution:

Problem 2

Determine the reduced SVDs of the following matrices:

$$
\text { (a) }\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right], \text { (b) }\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], \text { (c) }\left[\begin{array}{ll}
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right], \text { (d) }\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], \text {, (e) }\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

(Note that the answers can be different up to some multiplication of columns of U and V by ± 1.)

Solution:

Problem 3

Determine the (reduced) SVD of the following matrix (by hand calculation):

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Solution:

Problem 4

Suppose A is an $m \times n$ matrix and B is the $n \times m$ matrix obtained by rotating A ninety degrees clockwise on paper. Do A and B have the same singular values? Prove that the answer is yes or give a counterexample.

Solution:

