$\mathrm{LA}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ submissions are mandatory. The template for this problem can be found on the Piazza resource page for this course.

Problem 1

Find all vectors that are perpendicular to $(1,4,4,1)$ and $(2,9,8,2)$.

Solution:

Problem 2

From the nonorthogonal $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$, find orthonormal vectors $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$.

$$
\boldsymbol{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \boldsymbol{a}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \boldsymbol{a}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],
$$

Write matrix A as $Q R$ decomposition $A=Q R$.

Solution:

Problem 3

Consider the matrices

$$
A=\left[\begin{array}{ll}
1, & 0 \\
0, & 1 \\
1, & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1, & 2 \\
0, & 1 \\
1, & 0
\end{array}\right]
$$

Answer the following questions by hand calculation.
(a) What is the orthogonal projector P onto range (A) and what is the image under P of the vector $[1,2,3]^{t}$?
(b) Same question for B.

Solution:

Problem 4

Let A be a real symmetric matrix. An eigenvector of matrix A is a non-zero vector x such that $A x=\lambda x$ for some number λ which is called the eigenvalue corresponding to the eigenvector x.

Prove that if x and y are eigenvectors corresponding to distinct real eigenvalues λ_{1} and λ_{2}, then x and y are orthogonal.

Solution:

Problem 5

Let u and v are two vectors in \mathbb{R}^{n}. The matrix $A=I+u v^{*}$ is known as a rank-one perturbation of the identity. Show that if A is nonsingular (that is, if it has an inverse), then its inverse has the form $A^{-1}=I+\alpha u v^{*}$ for some scalar α and give an expression for α. For what u and v is A singular? If it is singular, what is nullspace (A) ?

Solution:

Problem 6

If P is an orthogonal projector, then the matrix $I-2 P$ is orthogonal. Prove this algebraically, and try to give a geometric interpretation for the transformation represented by matrix $I-2 P$.

Solution:

