Your name:

LATEX Submissions are mandatory. The template for this problem can be found on the Piazza resource page for this course.

Problem 1

Find all vectors that are perpendicular to (1, 4, 4, 1) and (2, 9, 8, 2).

Solution:

Problem 2

From the nonorthogonal a_1 , a_2 , a_3 , find orthonormal vectors q_1 , q_2 , q_3 .

$$oldsymbol{a}_1 = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, oldsymbol{a}_2 = egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}, oldsymbol{a}_3 = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix},$$

Write matrix A as QR decomposition A = QR.

Solution:

Problem 3

Consider the matrices

$$\mathbf{A} = \begin{bmatrix} 1, & 0\\ 0, & 1\\ 1, & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1, & 2\\ 0, & 1\\ 1, & 0 \end{bmatrix}$$

Answer the following questions by hand calculation.

(a) What is the orthogonal projector P onto range(A) and what is the image under P of the vector $[1, 2, 3]^t$?

(b) Same question for B.

Solution:

Problem 4

Let A be a real symmetric matrix. An *eigenvector* of matrix A is a non-zero vector x such that $Ax = \lambda x$ for some number λ which is called the *eigenvalue* corresponding to the eigenvector x.

Prove that if x and y are eigenvectors corresponding to distinct real eigenvalues λ_1 and λ_2 , then x and y are orthogonal.

Solution:

Problem 5

Let u and v are two vectors in \mathbb{R}^n . The matrix $A = I + uv^*$ is known as a rank-one perturbation of the identity. Show that if A is nonsingular (that is, if it has an inverse), then its inverse has the form $A^{-1} = I + \alpha uv^*$ for some scalar α and give an expression for α . For what u and v is A singular? If it is singular, what is nullspace(A)?

Solution:

Problem 6

If P is an orthogonal projector, then the matrix I - 2P is orthogonal. Prove this algebraically, and try to give a geometric interpretation for the transformation represented by matrix I - 2P.

Solution: