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Abstract
We introduce a generative, probabilistic, cluster-
based approach for one-shot learning to model
single examples of each class by forming an en-
semble of their subclusters using Gaussian Mix-
ture Models (GMMs). Sampling from the inferred
parameters of the Gaussian clusters generates new
cluster representations of the class, which is what
we propose as Abstracted Gaussian Prototype
(AGPs). Using AGPs, we can synthetically in-
crease the size of the training set to employ a
variational autoencoder (VAE) to learn a contin-
uous latent space over the AGPs to generate new
variants of different classes.

1. Introduction
The ability of humans to acquire novel concepts after only
minimal exposure to examples is an important constituent
of general intelligence. Humans have the remarkable abil-
ity to quickly abstract concepts and extrapolate from a few
prior examples (Lake et al., 2015), allowing for efficient and
adaptable learning. On the contrary, current machine learn-
ing architectures require large amounts of data to learn from.
As a result, the performance of these models significantly
diminishes when data is scarce. Hence, a key computational
challenge is to understand how an intelligent system can
acquire novel classes, given a modest amount of data. This
emerged the field of few-shot learning (Wang et al., 2020;
Kadam & Vaidya, 2020), which seeks to computationally
mimic human reasoning and learning with limited data.

The objective of few-shot learning is to create a model that
can learn classes while only being allowed a small number of
training data for each class. Here, we address the challenge
of one-shot learning, where only a single training instance
per class is allowed to be used. Specifically, we focus on a
generative task on the Omniglot Dataset (Lake et al., 2019),
which is a large image dataset of handwritten characters.
This generative task we will be focusing on involves creating
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Figure 1. Newly generated characters from our AGP-VAE pipeline.

entirely new variants of handwritten characters, given only
one example per class from a set of characters. The goal
is to have the model learn and generate new characters that
look plausible.

We propose a novel approach that only utilizes a single in-
stance per class to learn effectively, by leveraging the proba-
bilistic framework of Gaussian Mixture Models (GMMs).
GMMs are unsupervised clustering models that have the
ability to model complex data distributions by inferring
a combination of its simpler distributions (McLachlan &
Basford, 1988). Particularly, these simpler distributions cor-
respond to distinct clusters, which are the mixture model’s
Gaussian components, parameterized by unique means and
standard deviations (Yu et al., 2015). Essentially, the overall
data distribution is represented as a mixture of its individual
components. To be concise, note that we will use the terms
components, subparts, clusters, and segments to refer to the
same idea. While GMMs are traditionally used for discrim-
inative clustering tasks, they can also be used to generate
new data by sampling from the learned parameters of the
inferred distributions (Liang et al., 2022; Reynolds et al.,
2009).This can be particularly useful in generating mean-
ingful data in the realm of one-shot learning, where data is
limited and confined to one example.

Our approach leverages GMMs as the fundamental tool to
create new data prototypes of each class. A separate GMM
is used to model each class, where each Gaussian compo-
nent represents a distinct topological subpart of the class.
By sampling from the inferred parameters of each cluster,
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Figure 2. The raw image is shown on the left. The inferred clusters of the GMM is shown in the middle. Finally, the newly generated
abstracted prototype is sampled from the inferred parameters.

probabilistically augmented subparts are generated. The
collective ensemble of these subparts form what we propose
as the Abstracted Gaussian Prototype (AGP), see Figure 2.
AGPs provide a way to generate new data belonging to a
particular class.

However, AGPs can only represent one class at a time. In or-
der to generate new diverse variants of entirely new classes,
we employ a variational autoencoder (VAE) to learn a con-
tinuous latent space that encapsulates a probabilistic distri-
bution over all the generated AGPs. VAEs can learn mean-
ingful representations across classes through an encoder-
decoder architecture that maps input features into a lower-
dimensional, continuous latent space (Kingma et al., 2019).
Through variational inference, the encoder approximates
the true posterior distribution with a variational distribu-
tion, typically assumed to be Gaussian (Kingma & Welling,
2013). Therefore, the latent space is not confined to discrete
categories, but instead enables the model to probabilistically
sample between learned concepts and reconstruct new vari-
ations. Our formulation of this novel AGP-VAE pipeline
interpolates between subclusters of the AGPs by sampling
from a global feature space that encapsulates the local fea-
tures of different classes.

2. Background
In this section, we provide the mathematical background
underlying GMMs and VAEs which are fundamental to our
approach.

2.1. Gaussian Mixture Models

A GMM is a probabilistic clustering model that assumes the
data is generated from a combination of multiple Gaussian
distributions. Each Gaussian component k ∈ K represents
a cluster in the dataset, and is characterized by its unique
parameters mean µ, standard deviation σ, and a weight π.
A univariate Gaussian probability density function (PDF)
for random variable X , which represents the probability of

observing the given datapoint, is defined as the following:
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where X is now a d-dimensional feature vector, µ is a d-
dimensional vector representing the means of the distribu-
tion, and Σ is a d x d covariance matrix. Finally, a finite
GMM can be expressed by a weighted sum over K compo-
nents:

P (X|π, µ,Σ) =
K∑

k=1

πk ∗ N (X|µk,Σk) (3)

satisfying the condition where:

K∑
k=1

πk = 1 (4)

2.2. Variational Autoencoders

A variational autoencoder (VAE) is a type of neural net-
work architecture that has gained significant attention in
generative modeling, due to their ability to learn continuous
representations of discrete input classes (Kingma & Welling,
2013). Variational inference is a probabilistic framework
used to approximate complex posterior distributions by op-
timizing a simpler, parameterized distribution. In VAEs, the
goal is to infer the latent variables given the observed data.
This is achieved by introducing a probabilistic encoder that
maps data points to a distribution in the latent space. The
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encoder outputs both the mean and the variance of the ap-
proximate posterior distribution, which is typically assumed
to be Gaussian.

Encoder: The encoder of a VAE maps input data x to a
latent space variable z, and is defined by an approximate
posterior distribution:

qϕ(z|x) = N (z;µz(x), σz(x)
2) (5)

where µz(x) and σz(x) are the mean and standard devia-
tion of the approximate posterior learned by the encoder’s
weights and biases ϕ.

Sampling with Reparametrization Trick: To obtain a
sample z ∼ qϕ(z|x) from the latent space learned by the
encoder, the reparametrization trick is used to maintain
differentiability for backpropagation:

z = µz(x) + σz(x)⊙ ϵ (6)

where ϵ is typically sampled from a fixed standard normal
distribution:

ϵ ∼ N (0, 1). (7)

Decoder: The decoder of a VAE with parameters θ maps a
sample z from the latent space back to the original feature
space, generating a reconstruction x̂ from the conditional
likelihood distribution:

pθ(x|z) = N (x̂;µx(z), σx(z)
2) (8)

where µx(z) and σx(z) are the mean and standard deviation
of the reconstructed data.

Loss Function: The training objective for VAEs is to max-
imize the Evidence Lower Bound (ELBO). The ELBO is
defined by:

L(ϕ, θ) = (9)

Ez∼qϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z))

where the first term is the expected value of the log-
likelihood of x given z and the second term is the Kullback-
Leibler (KL) divergence between the approximate posterior
and the prior distribution. The KL divergence measures the
difference between two probability distributions and acts
as a latent space regularization term that encourages the
learned approximate posterior space to be close to the true
posterior. Let J be the dimensionality of z. For the case of
two Gaussian distributions, it is defined as

DKL(qϕ(z|x)||pθ(z)) = (10)

1

2
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3. Approach
In this section, we formalize our approach to the generative
tasks of one-shot learning on the Omniglot Challenge. The
Omniglot dataset consists of 1623 hand-written characters
taken from 50 different alphabets, with 20 examples for
each class. Given the limited number of available examples
for each class, it is often used to evaluate few-shot learning
approaches.

First, a separate GMM is used to model each concept, where
each cluster of the model is assumed to represent a unique
subpart of the concept. Next, we generate newly abstracted
subparts of each cluster by probabilistically sampling from
its fitted parameters. The collective ensemble of these gen-
erated subparts form what we refer to as the AGP, denoted
P . Overall, this can be thought of as a generative scheme
which produces new prototypes P for each class. Instead
of relying solely on the single provided examples for each
class, we can now generate multiple prototypes to synthet-
ically increase the size of the training set. The details are
discussed below.

3.0.1. ABSTRACTED GAUSSIAN PROTOTYPE
GENERATION

In a one-shot learning task, there is a set of N classes, de-
noted as C = {c1, c2, . . . , cN}, and one available instance
of each class. The given set of these single instances is
denoted as X = {x1, x2, . . . , xN}. Each instance of a
class is provided as a binary image of pixels. Under the
probabilistic framework of a GMM, let us define each sam-
pled pixel as the realization of a random variable, charac-
terized by its PDF. Each instance of a concept in X is first
segmented into its unique sub-parts using a GMM, where
G = {g1, g2, . . . , gk} represents the set of different seg-
ments in each instance and k is a hyperparameter controlling
the number of components in a GMM. Here, G represents
the mixture of Gaussian components of each instance, which
allows the GMM to sample from the fitted distribution for
each component gi and generate new augmented subparts pi.
We define the ensemble of these subparts as the prototype
P of the class, where P = {p1, p2, . . . , pk}.

3.1. Generative Tasks

There are three major steps to generate new variations of
exemplars or classes given only a single instance of each
class. First, we harness the ability of GMMs to generate
various prototypes to synthetically increase the amount of
training data available. This introduces more variation and
diversifies the training set. Second we leverage a VAE that
trains across all the synthetic data to generate continuous
new variations amongst the starting set. Finally, we use a
post-processing topological skeleton technique (Lee et al.,
1994; Zhang, 1997) to refine the generated outputs. The
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Figure 3. Visual turing tests of the output characters generated from our AGP-VAE pipeline. The set of characters drawn by the model is
(B, B) from left to right and (B, A) from top to bottom

pseudocode is shown in Algorithm 1.

3.1.1. AGP TRAINING SET

The approach from section 3.0.1 is used to generate more
prototypes to synthetically increase the size of a training set
Φ. This training set consists of a larger set of prototypes
where Φ = {P1,P1, . . . ,PD}, containing D new prototype
variants for each class. Generating a variety of prototypes
for each concept increases the diversity of the training data,
which is essential in improving the generalization capabili-
ties of models trained with limited samples.

3.1.2. VAE INTERPOLATION

After each GMM generates D new prototypes for each class
to create the new train set Φ, the next step is to create con-
tinuous variations among these prototypes. To accomplish
this, a single VAE model trains across Φi for i ∈ N classes
to learn a latent space representation that captures the un-
derlying structures of these abstracted prototypes. The key
advantage is that this latent space continuous, allowing for
coherent and semantically meaningful interpolation between
subparts of the discrete prototypes created by the GMMs.
The latent variables z are sampled accordingly to encour-
age semantic mixing between prototypes, which are then
decoded into the reconstructed variant images.

3.1.3. TOPOLOGICAL SKELETON REFINEMENT

The final step in this process involves a post-processing tech-
nique based the work of (Lee et al., 1994; Zhang, 1997) on
topological skeletons. Skeletonization is used often in image
processing and computer vision to reduce the thickness of a
binary object to a one-pixel-wide representation, while still
preserving the topological properties of the object. This step
further refines the reconstructed output images generated

by the VAE, and emphasizes the stroke-like properties of
Omniglot characters. After each reconstructed image from
the VAE is skeletonized, the final result is a collection of
generated variants of characters for each task, see Figure 1.

Algorithm 1 Generating New Variants
Input:
X ← set of single instances from N classes
GMM, VAE← trainable models
Skel← topological skeleton function
Output:
Φ← set of P prototypes
V ← final generated variants

for i in N do
train a GMMi(xi)
P ← sample from GMMi

Φ← Φ ∪ {P} append P to set of prototypes
train VAE(Φ) across Φ
z ← sample and reconstruct from VAE latent space
V ← Skel(z) postprocess reconstruction

end

4. Results
4.1. Generative Tasks

A ”visual turing test”, as described in (Lake et al., 2013) is
used to assess the quality of the generative outputs of the
model. In this test, a set of characters produced by a human
is displayed next to a set produced by the model, see Figure
3. Human judges then try to identify which set was drawn
by a human, and which set was generated by the model. Our
generative approach is evaluated based on the identification
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Identification Accuracy Preference
Mean 52.25% 55.25%
SD 8.13% 8.35%
Min 40.00% 43.00%
Max 63.00% 70.00%

Table 1. Descriptives for Average Scores Across Judges

accuracy of 20 human judges recruited online. The ideal
performance is 50 percent, indicating that the judges cannot
distinguish between characters produced by the human and
the model, and the worst-case performance is 100 percent.

Additionally, we asked follow up questions after displaying
each set of images to probe if the machine’s outputs could
potentially surpass the quality of human generated charac-
ters. The question was phrased ”Which set do you think
represents a better job of creating four new characters?”.

Overall Results for Generative Tasks The overall iden-
tification accuracy and preference scores averaged across
20 judges are revealed in Table 1 for 10 sets of questions.
Furthermore, Figure 4 displays the breakdown of scores to
reveal the subjective evaluations between each individual
judge. These overall scores reveal promising results, as iden-
tification accuracy is close to random chance. Remarkably,
preference for machine generated characters rank slightly
higher than the human-generated characters, which could
prompt for further exploration within AI-generated content.

5. Conclusion and Future Works
In this paper, we have presented a novel approach for ad-
dressing the challenging problem of one-shot learning using
AGPs. AGPs leverage GMMs to build representative pro-
totypes for each class by abstracting upon the subparts of
the single available instances for each class. First, we pro-
posed the AGP approach for generating new data from a
single example per class. Second, we developed a generative
pipeline employing VAEs to utilize the AGPs for generating
new classes.

While our approach presents promising contributions to one-
shot learning, there are limitations to be acknowledged. The
extension to handling numerous classes and instances could
pose computational challenges. The computational cost of
utilizing individual GMMs for each class may become pro-
hibitive in extensive datasets. Future research directions
should aim to address these limitations and further refine
the AGP framework for broader and more robust applica-
bility in the field of few-shot learning. Nonetheless, we
aim to present AGPs as a novel approach to propel a more
compositionally informed method of learning with minimal
data.

Figure 4. Each marker reveals the evaluation scores of a human
judge, averaged across all 10 sets of comparisons. The ideal
performance of 50 percent is indicated by the dashed red line.
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