No books, no notes, only SOA-approved calculators. You must show work, unless the question is a true/false or fill-in-the-blank question.

Name:

Question	Points	Score	
1	6		
2	6		
3	9		
4	9		
5	4		
6	12		
7	6		
8	6		
9	10		
10	5		
Total:	73		

1. Let X has distribution function

$$F(x) = \begin{cases} 0, & y \le 0, \\ \frac{x}{8}, & 0 < x < 2, \\ \frac{x^2}{16}, & 2 \le x < 4, \\ 1, & x \ge 4. \end{cases}$$

(a) (3 points) What is the density of X?

(b) (3 points) Find the mean of X.

- 2. Scores on an examination are assumed to be normally distributed with mean 78 and variance 36.
 - (a) (3 points) Suppose that students scoring in the top 10% of this distribution are to receive an A grade. What is the minimum score a student must achieve to earn an A grade?

(b) (3 points) If it is known that a student's score exceeds 72, what is the probability that his or her score exceeds 84?

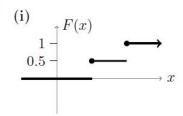
3. Let X have the cdf:

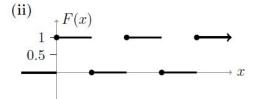
$$F(x) = \begin{cases} 0, & x < -1, \\ \frac{2-x^2}{7}, & -1 \le x < 0, \\ \frac{4}{7}, & 0 \le x < 1, \\ 1, & 1 \le x. \end{cases}$$

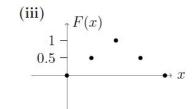
(a) (2 points) Find P(X = 0).

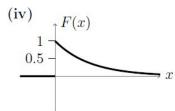
(b) (2 points) Let A be the set $\{-2, -1/2, 0, 1, \pi/4\}$. Find $P(X \in A)$.

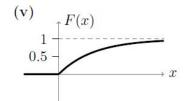
(c) (2 points) Find $P(-1 \le X \le 0)$.

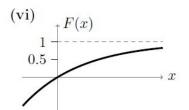

(d) (3 points) Find E(X).

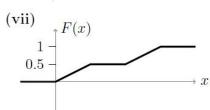

- 4. A continuous random variable X has pdf $f(x) = x + ax^2$ on [0, 1] and 0 elsewhere.
 - (a) (3 points) Find a.

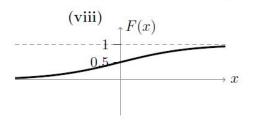

(b) (2 points) Find the CDF.


(c) (2 points) Find P(.5 < X < 1).


(d) (2 points) Find the mean of X.







5.

[No work needed for this question.]

(a) (2 points) Which functions above are valid cdf's?

(b) (2 points) Which functions are cdf's of continuous r.v.'s?

- 6. Let X be an exponential r.v. with parameter $\beta = 1$.
 - (a) (2 points) Find the median of this distribution.

(b) (3 points) Find $P(|X - \mu| \ge 2\sigma)$, where μ and σ are the expectation and standard deviation of X.

(c) (2 points) What is the estimate for this probability given by the Chebyshev theorem?

(d) (3 points) What is $P(X^2 + 2 \ge 3X)$?

(e) (2 points) What is $E(X^7)$?

7. Let X be an random variable with moment generating function $(1-2t)^{-2}$. Let Y be an random variable with moment generating function 1/(1-3.2t). Let Z be an random variable with moment generating function e^{5t+6t^2} .

[No work needed.]

- (a) (2 points) What is the distribution of X?
 - (A) normal
 - (B) beta
 - (C) uniform
 - (D) chi-square
 - (E) exponential
 - (F) none of the above
- (b) (2 points) What is the distribution of Y?
 - (A) uniform
 - (B) chi-square
 - (C) beta
 - (D) exponential
 - (E) normal
 - (F) none of the above
- (c) (2 points) What is the distribution of Z?
 - (A) chi-square
 - (B) beta
 - (C) gamma
 - (D) uniform
 - (E) normal
 - (F) none of the above

- 8. The minimum force required to break a particular type of cable is normally distributed with mean 12,432 and standard deviation 25. A random sample of 400 cables of this type is selected.
 - (a) (3 points) What is the probability that a randomly chosen cable will break under a force of 12,400?
 - (A) 2.5%
 - (B) 5%
 - (C) 10%
 - (D) 20%
 - (E) Other

(b) (3 points) Calculate the probability that at least 349 of the selected cables will not break under a force of 12,400.

[Don't forget to show your work.]

- (A) 0.62
- (B) 0.67
- (C) 0.92
- (D) 0.97
- (E) 1.00

9.	A man possesses five coins, two of which are double-headed, one is double-tailed, and two are normal. He shuts his eyes, picks a coin at random, and tosses it.			
	(a) ((2 points)	What is the probability that the lower face of the coin is a head?	
			He opens his eyes and sees that the coin is showing heads; what is the probability ace is a head?	that
		(2 points) face is a ho	He shuts his eyes again, and tosses the coin again. What is the probability that the lead?	ower
			He opens his eyes and sees that the coin is showing heads; what is the probability ace is a head?	that
		(2 points) that it sho	He discards this coin, picks another at random, and tosses it. What is the probab ws heads?	ility

10. (5 points) An insurance policy covers losses incurred by a policyholder, subject to a deductible of 10,000. Incurred losses follow a normal distribution with mean 12,000 and standard deviation c. The probability that a loss is less than k is 0.9582, where k is a constant. Given that the loss exceeds the deductible, there is a probability of 0.9500 that it is less than k.

Calculate c.

- (A) 2045
- (B) 2267
- (C) 2393
- (D) 2505
- (E) 2840