Math 447

No books, no notes, only SOA-approved calculators. You must show work, unless the question is a true/false or fill-in-the-blank question.

Name: _____

Section: _____

Question	Points	Score
1	10	
2	10	
3	12	
4	6	
5	15	
6	12	
7	5	
Total:	70	

1. Let Y has distribution function

$$F(y) = \begin{cases} 0, & y0, \\ \frac{y}{8}, & 0 < y < 2, \\ \frac{y^2}{16}, & 2 \le y < 4, \\ 1, & y \ge 4. \end{cases}$$

(a) (3 points) What is the density of Y?

(b) (3 points) Find the mean of Y.

(c) (4 points) Find the variance of Y.

- 2. Scores on an examination are assumed to be normally distributed with mean 78 and variance 36.
 - (a) (5 points) Suppose that students scoring in the top 10% of this distribution are to receive an A grade. What is the minimum score a student must achieve to earn an A grade?

(b) (5 points) If it is known that a student's score exceeds 72, what is the probability that his or her score exceeds 84?

3. (6 points) Let Y have a probability density function given by

$$f(y) = \begin{cases} 4y^2 e^{2y}, & y > 0, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) (3 points) Find E[Y]
- (b) (3 points) Find V[Y]

- 4. Let Y be an exponential r.v. with parameter $\beta = 1$.
 - (a) (3 points) Find $P(|Y \mu| \ge 2\sigma)$, where μ and σ are the expectation and standard deviation of Y.

(b) (3 points) Compare with the corresponding probabilistic estimate given by Chebyshev's theorem.

5. The joint density function of Y_1 and Y_2 is given by

$$f(y_1, y_2) = \begin{cases} 30y_1y_2^2, & y_1 - 1 \le y_2 \le 1 - y_1, 0 \le y_1 \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

(a) (3 points) Find $P(Y_1 > Y_2)$.

(b) (3 points) Derive the marginal density of Y_1 .

(c) (3 points) Derive the conditional density of Y_2 given $Y_1 = y_1$.

(d) (3 points) Find $P(Y_2 > 0 | Y_1 = .75)$.

(e) (3 points) Are the random variables Y_1 and Y_2 independent?

6. Suppose that the probability that a head appears when a coin is tossed is p and the probability that a tail occurs is q = 1 - p. Person A tosses the coin until the first head appears and stops. Person B does likewise. Let Y_1 and Y_2 denote the number of times that persons A and B toss the coin, respectively. It is reasonable to assume that Y_1 and Y_2 are independent.

(a) (3 points) What is the probability that A and B stop on exactly the same number toss?

(b) (3 points) Find $E(Y_1)$

(c) (3 points) Find $V(Y_1)$

(d) (3 points) Find $V(Y_1 - Y_2)$

7. (5 points) Let Y_1 have an exponential distribution with mean λ and the conditional density of Y_2 given $Y_1 = y_1$ be

$$f(y_2|y_1) = \begin{cases} \frac{1}{y_1}, & 0 \le y_2 \le y_1, \\ 0, & \text{elsewhere.} \end{cases}$$

Find $E(Y_2)$, the unconditional mean of Y_2 .