Q1 A technician starts a job at a time *X* that is uniformly distributed between 8:00 AM and 8:15 AM The amount of time to complete the job, *Y*, is an independent random variable that is uniformly distributed between 20 and 30 minutes. What is the probability that the job will be completed before 8:30 A.M. ?

(A) 1/2 (B) 1/3 (C) 1/4 (D) 1/5 (E) other

Q2 Let X and Y have the joint probability density function given by f(x, y) = 6(1 - y) if $0 \le x \le y \le 1$, and 0 elsewhere. Find the conditional expectation $\mathbb{E}(Y|X = 1/2)$. (A) 1/2 (B) 2/3 (C) 3/4 (D) 4/5 (E) other

Q3 Let $\{X_1, \ldots, X_9\}$ be an independent collection of random variables having the common mean $\mu = 1$ and variance $\sigma^2 = 4$. Let $\overline{X} = \frac{1}{9}(X_1 + \ldots + X_9)$. What is Var(\overline{X}) ? (A) 1/9 (B) 4/9 (C) 4 (D) 4/81 (E) other

Q4 Let X and Y denote the values of two stocks at the end of a five-year period. X is uniformly distributed on the interval (0, 12). Given X = x, Y is uniformly distributed on the interval (0, x). Calculate Cov(X, Y) according to this model. (A) 0 (B) 4 (C) 6 (D) 12 (E) 24