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1. BACKGROUND

Briefly, I have been working on perhaps the most famously difficult problem
in 4-manifold topology: Find new tools, which researchers can actually use, to
investigate the classification problem for smooth 4-manifolds. I have achieved this,
and I am currently writing papers to present examples. This line of research is
essentially unique, because most of the people in my field are unwilling to risk
working seriously on this problem. This research statement includes lots of pictures
to emphasize the hands-on, concrete character of what I am trying to do.

Where is the mystery in smooth 4-manifold classification? It has been known
since the 1990s [GS] that there are smooth 4-manifolds My, My such that M; and
M, are equivalent as topological manifolds (that is, there is a homeomorphism
f: My - M>), but they are not diffeomorphic, that is, they are not equivalent as
smooth manifolds (another way to say this is that f and f~* cannot both be dif-
ferentiable). For example, in every dimension besides n = 4, if a smooth manifold
is homeomorphic to R™, then it is diffeomorphic to R™; however there are uncount-
ably many pairwise non-diffeomorphic 4-manifolds homeomorphic to R™, so-called
exotic R*s. Typically, M, is a well-known “standard” manifold coming from alge-
braic geometry, like CP? or some other complex surface, and M, is an “exotic M;”
which is constructed using a variety of tools. To prove M5 is exotic, one must asso-
ciate some quantity to the diffeomorphism type of M; (that is, a smooth invariant)
and prove the corresponding invariant of Ms is different. Every method for finding
exotic closed 4-manifolds thus far has revolved around the fact that the only readily
computable invariant for smooth 4-manifolds is the Seiberg-Witten invariant which,
though defined for arbitrary closed, smooth oriented 4-manifolds, is readily shown
to be nontrivial only for the relatively small subset which admit symplectic forms.
A symplectic form is a closed differential 2-form that is not the zero form at any
point of the manifold. The Seiberg-Witten invariant of a smooth 4-manifold M is
the collection of solutions to a nonlinear system of partial differential equations on
M, and, roughly speaking, a symplectic form represents one solution. This fact
has led to the construction of exotics, but the Seiberg-Witten invariant is known
to vanish for large classes of 4-manifolds such as homology spheres and connected
sums Mi# M, , where each of M7 and Ms is a smooth 4-manifold with nonvan-
ishing Seiberg-Witten invariant. Famously, the Seiberg-Witten invariant is not a
useful tool for figuring out a very basic question: Is there an exotic 4-sphere? My
research is aimed at finding a new, more generally nontrivial invariant for which
calculations are possible. It is a program in two directions.
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FIGURE 1. The critical image of an indefinite Morse 2-function.
Arrows and circles in depicted reference fibers indicate the attach-
ing circles corresponding to indicated fold arcs.

2. SUMMARY OF ACCEPTED AND SUBMITTED PUBLICATIONS

2.1. Morse 2-functions. The first direction is to find better ways to depict any
smooth, closed oriented 4-manifold M using crown diagrams and crown multisection
diagrams coming from indefinite Morse 2-functions from M to the 2-sphere S? and
to R?, respectively. Such a map f: M — S? has a critical set comprising fold arcs
and isolated cusp points, whose union is a smooth 1-submanifold of M, and whose
image is depicted in Figure 1. The critical points of f (call the critical set crit f)
map to the bold arcs, and the pictured surfaces are mapped to the dots by f. As a
dot gets closer to the bold critical arc, a 0-sphere or a 1-sphere in the fiber collapses
to a single point, and the topology of the fiber changes as the dot crosses the bold
arc. The distinguished circle in f~!(vg) associated to an arc from vy to an arc of
critical points is called a vanishing cycle.

In general, crit f may not be connected, and its image can have crossings. Also,
f(crit f) can move around according to the Reidemeister moves when f is modified
by a homotopy, and the associated vanishing cycles can interact in complicated
ways. My paper [W1] proves that if a pair of such maps are homotopic, then the
homotopy can be realized by a sequence chosen from a set of four local model
homotopies. As an application, it also proves that any such map is homotopic to
what I call a crown map, which is a map whose critical set is mapped to the 2-sphere
in a pattern depicted in Figure 1c. The “spokes” of the wheel shown there form a
graph T of reference paths which is not part of the critical image. For a crown map
f: M — S?, the regular fiber ¥ = f~*(vy) can be decorated by the vanishing cycles
~; obtained from using the depicted reference paths in T" from vg to v;, i € {1,...,k}.
The sequence of circles I' = {~1,...,7%} is ordered cyclically. If ¥ is at least 3, then
f (and thus M) can be recovered from the pair (3,T"). In that case, (3,T") is called
a crown diagram.

My paper [W?2] gives a uniqueness theorem for crown diagrams: There are four
moves, or ways to modify a crown diagram without changing the 4-manifold it rep-
resents, and if (£,T) and (X/,I”) come from homotopic maps M — S?, then there
is a sequence of moves that converts (X,T') into (X',T'). This paper originally
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appeared in 2011, and over the years (most recently April 2022) T have made ex-
tensive revisions in response to referee comments, significantly adding to its length
and detail. Such a theorem is crucial for proving that some quantity associated
to a crown diagram is actually a smooth 4-manifold invariant. The paper is an
immensely technical and delicate argument, modifying the critical surface of a ho-
motopy of maps M — S? in a multi-stage process which, along the way, contains
independent proofs of results that others over the years have decided to publish as

papers in their own right; for example the modification of [W2, Lemma 3.8] appears
as the main theorem in [BS].
As a reference for [W2] and for people who want to do constructions, my paper

[W3] gives a reasonably universal library of situations in which a Reidemeister move
can be achieved by a homotopy of f. As applications it builds on the work of [W2],
refining the list of moves in various ways. For example, if the crown diagrams in the
previous paragraph have the same genus, then the most mysterious and difficult of
these moves on crown diagrams, stabilization, can be removed from the sequence of
moves converting (X, T') to (X', T"). Stabilizations are difficult because, as currently
described using equations in the mapping class groups of ¥ and ¥’ they involve
adding an element to I' which is defined in terms of all the other elements of I", and
the calculation involved in this definition can be rather difficult. This result about
omitting stabilizations for like-genus diagrams is a surprise because the analogous
result for a close relative of crown diagrams (Heegaard diagrams of 3-manifolds) is
false. There is another result stating that the remaining moves are sequences of
what I call slides, as shown in Figure 2. These last two sentences are especially

Vi

FIGURE 2. The vertical arc at left, which is part of a vanishing
cycle v, slides over the vanishing cycle v, at right. If a pair of dia-
grams differ by a sequence of slides, they are called slide-equivalent.

important for the second direction of research outlined below. Another application
in that paper, depicted in [W2, Figure 7], is an existence result for crown diagrams
in the form a basic, explicit algorithm to convert any continuous map M — S? into
a crown map.

The main result of [W2] involves moves one may perform on crown diagrams.
These moves were closely studied in papers of Behrens and Hayano such as [BI],
where they were given descriptions in the form of equations in mapping class groups
of surfaces. Such descriptions are generally annoying to verify for a given modifica-
tion of diagrams, and these equations lacked descriptions that actually showed how
they change a given crown diagram. In [W2], I gave diagrammatic descriptions of
the two less complicated moves, handleslide and multislide, and in [W4], T gave a
diagrammatic description of the shift move. That paper also has a general diagram-
matic framework for performing a move from [W1] called the cusp merge, which
has historically mysterious for researchers who want to work with Morse 2-functions
from the perspective of base diagrams such as Figure 1. The main motivation for
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this paper was to present an algorithm for converting a Lefschetz fibration over S2
into a crown map, whose diagram I call a coronation of the Lefschetz fibration,
while keeping track of all of the vanishing cycles, and to present a vastly simplified
version of the algorithm that results in a diagram which is slide-equivalent to the
coronation.

2.2. Smooth invariants. In [W5], I present the salient set of a crown diagram
(3,0 ={71,...,7}). Its definition is simple enough to be given in the next para-
graph. The important aspects of the salient set of a crown diagram are as follows:

e It is entirely combinatorial, avoiding the moduli spaces and perturbation
theory of Seiberg-Witten and holomorphic curve techniques.

e It seems to be entirely applicable, because it does not require the geo-
metric hypotheses of previous invariants. For this reason it seems realisti-
cally suited to addressing problems which have seemed entirely intractible
for decades, such as the smooth 4-dimensional Poincare conjecture, which
posits that there is no exotic 4-sphere.

e Its definition and calculation is elementary, allowing early graduate students
and relatively simple software to work with it.

e It has elaborations as described in Section 3.

With that propaganda stated, here is the construction.

Because of the cyclic ordering on I', a crown diagram naturally specifies a k-
component link in ¥ x S* given by the circles ;, and each crossing z in this link
corresponds to a pair of complementary chords {z} x I and {z} xJ in ¥ x S!, where
1,J are the two closed intervals from one strand of the crossing to the other. A
choice of which circle is labeled ~; pins down which of the two chords appears as a
vertical arc connecting the strands of each crossing. An example appears in Figure
3:

F1GURE 3. A crown diagram for the 4-sphere due to Hayano, with
under- and over-crossings resulting from choosing a “first” van-
ishing cycle v;. The chords are line segments connecting the two
strands of each crossing.

Each crossing now corresponds to exactly one chord, and the four quadrants near
a crossing get signs as in Figure 4.

The link cuts ¥ into regions with corners at the crossings, and each quadrant can
be labeled by its corresponding signed chord. For each region, there is a grading
equation obtained by setting the sum of the labels of its quadrants equal to zero.
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FIGURE 4. The signs of the quadrants near a crossing.

The system of equations obtained as the grading equations of all regions and for all
choices of “first” vanishing cycles is called the grading system of (3,T'). Observe
that ~; intersects ;41 at a unique transverse point, as required by the local model
of a cusp point. There is a distinguished “short” chord traveling from ; to 41,
without passing through any of the fibers ¥ x {pt} containing the other components
of the link; call these the salient chords. Then the salient set is the solution space
of the grading system spanned by the salient chords.

In [W5], the slide invariance of the salient set is established with elementary
linear algebra, and this implies that if fy, fi: M — S? are homotopic crown maps,
then the salient sets of their crown diagrams are equal. Using software developed
in collaboration with a Binghamton University computer science graduate student
named Umur Ciftci, I was able to verify that the salient sets for crown diagrams of a
pair of 4-manifolds which are known to have the same Seiberg-Witten invariants are
not the same. For this reason, there is no smooth homotopy connecting their crown
maps. If there were, then the corresponding smooth structures would be isotopic in
the sense of smoothing theory, so the conclusion is that the smoothings represented
by these manifolds are not isotopic. The isotopy class of a smooth structure is a
much more subtle object than the diffeomorphism class, and it seems likely that the
result can be strengthened to say the manifolds are not diffeomorphic; see Section
3.

3. FUTURE

3.1. Slide invariance conjecture. As shown in [W6], there is a simple way to
convert a crown map into a map to the disk while keeping track of the vanish-
ing cycles. The critical image of the resulting map is a collection of concentric
circles, with a circle ¢ appearing like Figure lc at the center. If (v1,72...,7k)
was the sequence of vanishing cycles for the crown diagram, the sequence for c is
(v1,Y2,71,72,73, - - - » V& ). There it is shown that the sequences coming from differ-
ent choices of 7y, are slide-equivalent. Given such a map, one may apply a homotopy
as in Figure 5:

FIGURE 5. From left to right, converting a crown multisection map
into a trisection map using well-understood moves.
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This can all be done while keeping track of the vanishing cycles, according to the

techniques of [W4]. Up to slide equivalence, each vanishing cycle becomes a triple
as in Figure 6. In keeping the previous results of [W3, ] concerning the slide
P i P .~."‘-.
\/ \/

FIGURE 6. Conversion of crown diagram vanishing cycles into the
vanishing cycles of a trisection.

equivalence of diagrams with the same genus, [\W6] has the conjecture that any like-
genus pair of crown diagrams that can be connected by the modifications of Figure
5 and the uniqueness of trisections given by [GI{, Section 5] is slide equivalent.
Such a result would allow the main result of [W5] to be strengthened to say the

manifolds in that paper are not diffeomorphic, and it would allow the construction
of salient sets to be applied in the setting of trisections and multisections of smooth
4-manifolds, which is a field with many active researchers who are writing papers
with existence results, but essentially no uniqueness results due to the lack of useful
invariants.

3.2. Differential graded algebra. The chords of a crown diagram can be taken
as the generators of an associative algebra over Zs, and this algebra has a differential
defined exactly like the Legendrian contact homology differential from [C]. In that
paper, Chekanov uses the condition that the components of a link are Legendrian to
prove his differential squares to zero; in place of that, and in a rather straightforward
way, one may instead use the fact that the components of the link specified by a
crown diagram are stacked, in the sense that each lives in its own slice ¥ x {pt} c S*.
Legendrian contact homology has been an incredibly fruitful area of research for
knot theory and contact topology, and the same can be expected for the differential
chord algebra of a crown diagram.

3.3. Topology of Morse 2-functions. I plan to continue studying maps from 4-
manifolds to surfaces. For example, I have recently found a new way to achieve the
mysterious stabilization move mentioned at the beginning of this statement that
allows one to use the techniques of [W4] to keep track of the vanishing cycles, as
shown in Figure 7.

-e

FIGURE 7. Stabilizing a crown map.
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The moves in that figure are either well-understood with respect to vanishing
cycles, or (as when circles merge into one) have been recently investigated by the
author in [W4], so a simple diagrammatic description of the stabilization move for
crown diagrams is now within reach.

Results such as this enable a true ability to work with maps from 4-manifolds
to surfaces while keeping track of vanishing cycles. They will also be important
for constructions and for comparing the salient sets and chord algebras for crown
diagrams of different genus.

[BH]
(BS]
(€]

[GK]
(GS]
(Wi]
(W2]
(W3]
[W4]

(W3]
[Wo]

REFERENCES

S. Behrens and K. Hayano, Elimination of cusps in dimension 4 and its applications, Proc.
London Math Soc. 113 (5), 674-724. d0i:10.1112/plms/pdw042

R. I. Baykur and O. Saeki, Simplifying indefinite fibrations on 4-manifolds, Trans. AMS (to
appear) doi:10.1090/tran/8325

Y. Chekanov, Differential algebra of Legendrian links, Invent. math. 150, 441-483 (2002).
DOI 10.1007/s002220200212 MR 1946550

D. Gay and R. Kirby, Trisecting 4-manifolds, Geom. Topol. 20 (2016) 3097-3132.
doi:10.2140/gt.2016.20.3097 MR3590351

R. Gompf and A. Stipsicz, 4-manifolds and Kirby Calculus, Graduate Studies in Math. 20,
Amer. Math. Soc., Providence, RI (1999). MR1707327

J. Williams, The h-principle for broken Lefschetz fibrations, Geom. Topol. 14 no. 2 (2010),
1015-1061. doi:10.2140/gt.2010.14.1015

J. Williams, Uniqueness of crown diagrams of smooth 4-manifolds, submitted. (latest sub-
mitted version)

J. Williams, Existence of 2-parameter crossings, with applications, Geom. Ded. 207,
265-286(2020). doi:10.1007/s10711-019-00499-1

J. Williams, Depicting a generalized shift move in crown diagrams, to appear in Top. Proc.
J. Williams, The salient crossings of a crown diagram, 2021 preprint, submitted.

J. Williams, The salient crossings of a crown multisection, 2022 preprint.


http://arxiv.org/abs/1210.5948
https://doi.org/10.1090/tran/8325
http://link.springer.com/article/10.1007/s002220200212
https://doi.org/10.2140/gt.2016.20.3097
http://www.ams.org/bookstore-getitem/item=GSM-20
http://dx.doi.org/10.2140/gt.2010.14.1015
https://arxiv.org/abs/1103.6263
http://www2.math.binghamton.edu/lib/exe/fetch.php/people/jwilliams/p2.pdf
http://www2.math.binghamton.edu/lib/exe/fetch.php/people/jwilliams/p2.pdf
https://doi.org/10.1007/s10711-019-00499-1
http://arxiv.org/abs/2202.04749
http://arxiv.org/abs/2202.05418
http://www2.math.binghamton.edu/lib/exe/fetch.php/people/jwilliams/p15.pdf

	1. Background
	2. Summary of accepted and submitted publications
	2.1. Morse 2-functions
	2.2. Smooth invariants

	3. Future
	3.1. Slide invariance conjecture
	3.2. Differential graded algebra
	3.3. Topology of Morse 2-functions

	References

