Section 3 Solution Homework 9 MATH 304

Assigned:

Friday, October 10.

Potentially Collected:

Friday, October 17.

1. Are the following subspaces of their respective vector spaces?

(i) H consists of all vectors $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	$\left[egin{array}{c} s \ s \end{array} ight] ext{ in } \mathbb{R}$	³ .
--	--	----------------

$$\left[\begin{array}{c} s+3t \\ s-t \\ 2s-t \\ 4t \end{array}\right] ext{ in } \mathbb{R}$$

Are the following subspaces of their respective vector S as S and S and S are S and S are S and S are S and S are S are S and S are S and S are S are S and S are S are S are S and S are S and S are S and S are S are S are S and S are S and S are S are S and S are S are S and S are S and S are S are S and S are S are S and S are S and S are S are S and S are S are S and S are S and S are S are

(iii) T is the set of all vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ where $x^2 + y^2 \le 1$ in \mathbb{R}^2 . Wis the span of

2. Let
$$\vec{v_1} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
, $\vec{v_2} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, $\vec{v_3} = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 6 \end{cases} \end{cases}$$
, and $\vec{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{cases}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 6 \end{cases} \end{cases}$$
, and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{cases}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 6 \end{cases} \end{cases}$$
, and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{cases}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 6 \end{cases} \end{cases}$$
, and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{cases}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 6 \end{cases} \end{cases}$$
, and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{cases}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 6 \end{cases} \end{cases}$$
, and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{cases}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 6 \end{cases} \end{cases}$$
, and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{cases}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 6 \end{cases} \end{cases}$$
, and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{cases}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 6 \end{cases} \end{cases}$$
, and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{cases}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 6 \end{cases} \end{cases}$$
, and $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{cases}$.
$$\begin{cases} \begin{cases} 1 \\ 2 \\ 3 \end{cases} \end{cases}$$
, and the formula of the formula

(i) Is \vec{w} in Span $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$?

(ii) If yes, then what are the coefficients for \vec{w} in the linear combination of $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$?

So Wis a subspace 184.

Tie not a subspace as [1]ET

(note 12+02=1) yet c[i]=[c] is generally not in T.

If C>1, C2+02=C2>1 So csole T.

Solve
$$\begin{bmatrix} 1 & 2 & 4 & 1 & 3 \\ 0 & 1 & 2 & 1 & 1 \end{bmatrix}$$
 $f_3 = R_3 + R_1$ $\begin{bmatrix} 1 & 2 & 4 & 1 & 3 \\ 0 & 1 & 2 & 1 & 1 \end{bmatrix}$ $f_3 = R_3 + R_2$ $\begin{bmatrix} 1 & 2 & 4 & 1 & 3 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 5 & 10 & 5 \end{bmatrix}$ $f_3 = R_3 - 5R_2$ $\begin{bmatrix} 1 & 2 & 4 & 1 & 3 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

$$\Gamma_1 = R_1 - 2R_2 \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$
 so $\overline{w} = \alpha_1 \overline{v}_1 + \alpha_2 \overline{v}_2 + \alpha_3 \overline{v}$

where $\alpha_1 = 1$

There $\alpha_1 = 1$

There $\alpha_2 = 1$

There $\alpha_1 = 1$

There $\alpha_2 = 1$

There $\alpha_3 = 1$

$$a_2 = 1 - 2a$$

 $\begin{array}{ll}
Q_2 = 1 - 2Q_3 & \begin{bmatrix} 1 \\ 1 - 2Q_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + Q_3 \\
Q_3 \text{ anything} & \begin{bmatrix} Q_3 \\ Q_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + Q_3
\end{array}$