Homework 24 MATH 304 Section 3

Assigned:
Monday, November 21.
Potentially Collected:
Wednesday, December 3.

1. Find the characteristic polynomials, the eigenvalues, and associated eigenvectors for each of the following matrices.

$$
P_{A}(\lambda)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right]\right)=(1-\lambda)^{2}-1=\lambda^{2}-2 \lambda=\lambda(\lambda-2)
$$

(a) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & -1 \\ 2 & 4\end{array}\right]$

Eigenvalues: $\lambda \in\{0,2\}$
(c) $\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{ccc}2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1\end{array}\right]$

$$
\begin{aligned}
P_{B}(\lambda)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -1 \\
2 & 4-\lambda
\end{array}\right]\right)= & (1-\lambda)(4-\lambda)+2=\lambda^{2}-5 \lambda+6 \\
& =(\lambda-3)(\lambda-2)
\end{aligned}
$$

Eigenvalues: $\lambda \in\{2,3\}$

$$
\begin{aligned}
& P(\lambda)=\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 1 & 2 \\
0 & -\lambda & 3 \\
0 & 0 & -\lambda
\end{array}\right]\right) \quad \frac{E_{2}=n u l\left(\left[\begin{array}{cc}
-1 & -1 \\
2 & 2
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right) \quad E_{3}=n v /\left(\left[\begin{array}{cc}
-2 & -1 \\
2 & 1
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{cc}
-\frac{1}{2} \\
1
\end{array}\right]\right)}{} \\
&=-\lambda^{3}
\end{aligned}
$$

Eigenvalues: $\lambda \in\{0\} \quad E_{0}=n u l\left(\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)$

$$
\begin{aligned}
P_{D}(\lambda)=\operatorname{det}\left(\left[\begin{array}{ccc}
2-\lambda & 2 & 3 \\
1 & 2-\lambda & 1 \\
2 & -2 & 1-\lambda
\end{array}\right]\right) & =(2-\lambda)((2-\lambda)(1-\lambda)+2)-2(1-\lambda-2)+3(-2-2(2-\lambda)) \\
& =-\lambda^{3}+5 \lambda^{2}-2 \lambda-8=(\lambda-2)\left(-\lambda^{2}+3 \lambda+4\right) \\
& =-(\lambda-2)(\lambda-4)(\lambda+1)
\end{aligned}
$$

Eigenvalue: $\lambda \in\{-1,2,4\}$

$$
\begin{aligned}
& E_{1}=n v l\left(\left[\begin{array}{ccc}
3 & 2 & 3 \\
1 & 3 & 1 \\
2 & -2 & 2
\end{array}\right]\right)=\operatorname{Span}\left(\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right) \\
& E_{2}=n u l\left(\left[\begin{array}{ccc}
0 & 2 & 3 \\
2 & 0 & 1 \\
2 & -1
\end{array}\right]\right)=\operatorname{Span}\left(\left[\begin{array}{cc}
-1.5 \\
1
\end{array}\right]\right) \\
& E_{4}=n u\left(\left(\left[\begin{array}{ccc}
-2 & 2 & 3 \\
1 & -2 & 1 \\
2 & -2 & -3
\end{array}\right]\right)=\operatorname{San}\left(\left[\begin{array}{c}
4 \\
2 \\
1 \\
1
\end{array}\right]\right)\right.
\end{aligned}
$$

