Solution

Problem	1	2	3	4	5	6	Total	
Full Score	20	20	20	20	20	20	120	
Your Score								

- Read all problems before beginning and try to work from easiest to hardest.
- In order to get credit, you must show all of your work.
- NO calculators of any kind! NO cell phones!
- Check to make sure that your exam has six (6) pages and six (6) questions.
- 1. <u>Clearly</u> circle "True" or "False" for each of the following problems. Circle "True" only if the statement is always true. No explanation necessary.

TRUE FALSE

(a) Let $X = \{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}, \vec{v_5}\}$, where $\vec{v_i} \in \mathbb{R}^4$. Then X is a linearly dependent set.

TRUE FALSE

(b) Any set of vectors in \mathbb{R}^n consisting of a single vector is a linearly independent set.

TRUE)FALSE

(c) If A is a invertible $n \times n$ matrix, then $Nul(A) = \{\vec{0}\}.$

TRUE (FALSE)

(d) If A is a singular $n \times n$ matrix, then $Col(A) = \mathbb{R}^n$.

TRUE FALSE

(e) Subsets of linearly independent sets are necessarily linearly independent.

TRUE FALSE

(f) A vector space has a finite spanning set if and only if it has a finite basis.

TRUE FALSE

(g) Let V and W be vector spaces with $\dim(V) = n$ and $\dim(W) = m$, respectively. If $L: V \to W$ is a linear transformation which is onto, then $n \geq m$ and $\dim(\ker(L)) = n - m$.

TRUE FALSE

(h) Let V and W be vector spaces and F an isomorphism from V to W. If S is a linearly dependent set in V, then F(S) is a linearly dependent set in W.

TRUE FALSE

(i) There exists an isomorphism from \mathbb{P}_6 to \mathbb{R}^6 . The place with basis

TRUE FALSE

(j) If F is a spanning set for a vector space V, then every vector in V can be written as a linear combination of vectors in S in only one way.

2. Let
$$X = \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 3 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix}$$
 be a collection of vectors in \mathbb{R}^4 .

a) Show that X is linearly dependent by finding a linear dependence relation for X.

in RREF we have
$$\begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \end{bmatrix}$$
. It is LD as the rank is 2 which does not equal the number of elements in X.

b) Name a vector that can be removed from X so that the remaining two vectors have the same span as X. Explain!

c) For every real number
$$t$$
, let $\vec{v}(t) = \begin{bmatrix} 1 \\ 0 \\ -1 \\ t \end{bmatrix}$.

Determine all values for t such that $\vec{v}(t)$ belongs to $\mathrm{Span}(X)$. For each such value of t, express $\vec{v}(t)$ as a specific numeric linear combination of vectors from X. Show your work!

$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 2 & 4 & 3 & 0 \end{bmatrix} \underbrace{\Gamma_2 = R_2 - 2R_1}_{2} \begin{bmatrix} 0 & 2 - 1 & -2 \\ 0 & 2 - 1 & -2 \\ -2 & 5 & 0 \end{bmatrix}}_{3 = R_3 - R_1} \underbrace{\begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 2 - 1 & -2 \\ 0 & 2 & -1 & -2 \end{bmatrix}}_{3 = R_3 - R_2} \underbrace{\Gamma_4 = R_4 - 2R_2}_{4 - 2 \cdot t - 1} \underbrace{\Gamma_4 = R_4$$

3. Consider the following vectors in \mathbb{R}^3 :

$$\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}, \vec{w} = \begin{bmatrix} -2 \\ t \\ 1 \end{bmatrix}. \qquad \mathcal{H} = \{\vec{\alpha}, \vec{\mathcal{V}}, \vec{w}\}$$

X is a basis for R3 if and only if the matrix for X invertible if and only if -32-3+0 > t + -1

(b) It is given that for t=0 the vectors $\vec{u}, \vec{v}, \vec{w}$ form a basis for \mathbb{R}^3 . Let $B_1=(\vec{u}, \vec{v}, \vec{w})$ and $B_2 = (\vec{v}, \vec{u}, \vec{w})$ be ordered bases of \mathbb{R}^3 .

(i) Find $K_{B_1} \begin{pmatrix} & 1 & \\ & 0 & \\ & 1 & \end{pmatrix}$ (recall that K_Y is the coordinate transformation for the basis Y).

$$K_{B,}([0]) = \begin{bmatrix} 9 \\ 5 \end{bmatrix}$$
 where $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = a\vec{u} + b\vec{v} + c\vec{w}$
Solve $\begin{bmatrix} \vec{u} \ \vec{v} \neq \vec{v} \end{bmatrix}$

So
$$K_{B_i}([0]) = \begin{bmatrix} -1\\ -1 \end{bmatrix}$$

in RREF [100;-17 So $K_{\mathcal{B}_{1}}\left(\begin{bmatrix}\vec{o}\end{bmatrix}\right) = \begin{bmatrix}-1\\-1\end{bmatrix}$ (ii) Find a vector $\vec{b} \in \mathbb{R}^{3}$ such that $K_{B_{2}}(\vec{b}) = \begin{bmatrix}1\\0\\1\end{bmatrix}$.

$$\begin{array}{l}
(-5) = 1 \vec{v} + 0 \vec{u} + 1 \vec{w} \\
= \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} -27 \\ 1 \end{bmatrix}$$

$$K_{\mathcal{B}_{2}}\left(\begin{bmatrix} -2\\ 4 \end{bmatrix}\right) = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

Version B

$$K_{B_1}([0]) = [-1]$$

 $K_{B_2}([-1]) = [0]$

4. Let
$$M = \begin{bmatrix} 0 & 1 & 1 & -1 & 1 \\ 1 & 2 & -1 & 2 & 0 \\ -2 & -1 & 5 & -7 & 4 \end{bmatrix}$$
 in RREF $\begin{bmatrix} 1 & 0 & -3 & 4 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

(a) Complete the following:

$$Col(M)$$
 is a subspace of \mathbb{R}^h where $h = 3$

(b) Determine Nul(M) and a basis for Nul(M).

$$Nul(M) = \{\vec{x} \in \mathbb{R}^5 \mid M\vec{x} = \vec{o}\}$$

the solution to Mix = D can be expressed

$$C_{1}-3c_{3}+4c_{4}=0 \quad s_{0} \quad \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = c_{3} \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} + c_{4} \begin{bmatrix} -4 \\ 1 \\ 0 \end{bmatrix}$$

$$C_{5}=0 \quad \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} = c_{3} \begin{bmatrix} 3 \\ -1 \\ 1 \\ 0 \end{bmatrix} + c_{4} \begin{bmatrix} -4 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

(c) Find a basis for Col(M).

A basis is
$$\begin{bmatrix} 0 \\ -2 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ A basis for $Nul(M)$ is

(d) Find a basis for Row(M).

A basis is
$$\begin{cases} [011-11], \\ [12-120], \\ [2-15-74] \end{cases}$$

$$02([10-340], \\ [01170], \\ [00001] \end{cases}$$

A bases is

A basis for col(M) is

5.	Let P	be the	vector	space	of poly	nomials	with	real	coefficients	of	degree	at	most	3.	Consider
	$\mathcal{X} = \{$	1 - 2x +	x^3 ,	-2 + 2	$x + x^2 -$	$+2x^3$,	1 +	x-2	$\{x^2\}.$		O				

(a) Show that
$$\mathcal{X}$$
 is a linearly independent set. Let $\mathcal{Y} = (1, \chi, \chi^2, \chi^3)$

$$K_{y}(x) = \{\begin{bmatrix} -2 \\ -2 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}\}$$

the matrix for
$$K_y(X)$$
 has RREF $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, sor $K_y(X)$ is LI. (rank = #elements)

(b) Find a basis for
$$Span(\mathcal{X})$$
). What is the dimension of $Span(\mathcal{X})$?

(c), Find a basis of
$$\mathbb{P}_3$$
 which contains the set \mathcal{X} . Explain why the set you find is a basis.

$$\mathcal{X} \cup \{x^3\}$$
 will soffice.

(e) Is
$$S = (x, x + x^2, x + x^2 + x^3)$$
 a basis for $\ker(F)$? Explain. $J = (1, X, X^2, X^3)$
 $F(x) = O$
 $F(x + x^2) = O$
 $F(x + x^2 + x^3) = O$
 $S = (x, x + x^2, x + x^2 + x^3)$ a basis for $\ker(F)$? Explain. $J = (1, X, X^2, X^3)$
 $S = (1, X$

sor Sis a basis for Ker (F).