Solution

Problem	1	2	3	4	5	6	Total
Full Score	20	20	20	20	20	20	120
Your Score							

- Read all problems before beginning and try to work from easiest to hardest.
- In order to get credit, you must show all of your work.
- NO calculators of any kind! NO cell phones!
- Check to make sure that your exam has six (6) pages and six (6) questions.
- 1. <u>Clearly</u> circle "True" or "False" for each of the following problems. Circle "True" only if the statement is always true. No explanation necessary.

TRUE FALSE

(a) The matrix $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ is in diagonal form.

TRUE FALSE

(b) The rank of an 11×7 matrix is greater or equal to 7.

TRUE FALSE

(c) Suppose that A is a 5×3 matrix. Then $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ has infinitely many solutions.

TRUE FALSE

(d) Let A be an $m \times n$ matrix with m > n. Then any row echelon form contains at least m - n zero rows.

TRUE) FALSE

(e) An $m \times n$ matrix has m rows and n columns.

TRUE) FALSE

(f) Every elementary matrix is nonsingular.

TRUE) FALSE

(g) Let $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ be different solutions of the nonhomogeneous system $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$. Then $\vec{\mathbf{u}} - \vec{\mathbf{v}}$ is a nontrivial solution of the associated homogeneous system.

TRUE FALSE

(h) The matrix $\begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$ is in reduced row echelon form.

TRUE FALSE

(i) Let A, B be $n \times n$ matrices and rank(A) = n. Then the matrix equation AX = B is always solvable.

TRUE (FALSE

 $(j) (AB^T)^T$ is always equal to A^TB for all matrices A and B such that AB^T is defined.

2. Suppose that

$$M = \begin{bmatrix} 0 & 1 & -1 & -3 & 4 & 13 \\ 0 & 3 & -3 & -9 & 15 & 45 \\ 0 & -1 & 4 & 9 & -4 & -19 \end{bmatrix} \quad \mathcal{C}_2 = \mathcal{R}_2 - \mathcal{I}_1$$

is the augmented matrix of a system of linear equations in the variables x_1, x_2, x_3, x_4, x_5 .

a) Bring the matrix M into reduced row echelon form, indicating all elementary row operations.

$$\begin{bmatrix} 0 & 1 & -1 & -3 & 4 & 13 \\ 0 & 0 & 0 & 3 & 6 \\ 0 & 0 & 3 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 3R_3 \\ 3 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 3R_3 & 0 & 0 & 1 & 2 \\ 3R_2 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} -2R_1 - 4R_3 \\ 3R_2 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

b) Which variables are the basic variables?

c) Which variables are the free variables?

$$\chi_1, \chi_4$$

d) What is the rank of M?

3

e) List the columns of M which are pivot columns.

$$\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 15 \\ -4 \end{bmatrix}$$

f) If the system is consistent, write its solution in parametric form.

$$\chi_1$$
 anything χ_2 anything $\chi_3 = 3+1\chi_4$ $\chi_5 = 2$ $\chi_5 = -2-2\chi_4$

3. Given a matrix

$$M = \left[\begin{array}{ccc|ccc|c} 1 & 0 & 1 & 1 & a & b \\ 0 & 1 & 2 & 3 & c & d \\ 0 & 0 & 0 & 0 & e & f \end{array} \right]$$

representing the augmented matrix of a system of equations in reduced row echelon form. Compute the following by filling in the blanks.

(a) For $a = \underbrace{\text{anything}}_{b} b = \underbrace{O}_{,c} = \underbrace{\text{anything}}_{,d} d = \underbrace{O}_{,e} = \underbrace{O}_{,f} = \underbrace{1}_{,t}$, the matrix M represents the reduced row echelon form of an inconsistent system of equations. f = 1, b = 0, d = 0The pivots are located at $\underbrace{M}_{ij} = \underbrace{M}_{ij} = \underbrace{M}$

The rank of the coefficient matrix is _______

The rank of the augmented matrix is _____.

(b) For a = 0, $b = m_1$, c = 0, $d = m_2$ thing the augmented matrix of a consistent nonhomogeneous system in reduced row echelon form.

The pivots are located at m_{11} , m_{22} , m_{35} .

The rank of the augmented matrix is _______

The rank of the coefficient matrix is

(c) For a = 1, b = 0, c = 1, d = 0, e = 0, f = 0, the matrix M is the augmented matrix of a homogeneous system of rank 2, in reduced row echelon form.

The complete solution in parameterized form is

$$x_1 = \underline{\hspace{1cm}}, x_2 = \underline{\hspace{1cm}}, x_3 = \underline{\hspace{1cm}}, x_4 = \underline{\hspace{1cm}}, x_5 = \underline{\hspace{1cm}}$$

$$\chi_1 = -\chi_3 - \chi_4 - \chi_5$$
 χ_3, χ_4, χ_5 anything $\chi_2 = 2\chi_3 - 3\chi_4 - \chi_5$

- 4. Consider the matrices $A = \begin{bmatrix} 2 & -1 & -4 \\ -1 & \frac{1}{2} & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ \frac{1}{2} & 1 \end{bmatrix}$. For each of the following operations, either do the indicated calculations or explain why it is not defined.
 - (i) A + B

(ii)
$$A \cdot B$$

A B undefined

2×3 2×2

(iii)
$$B \cdot A$$

$$= \begin{bmatrix} [1 & 2]A \\ [\frac{1}{2} & 1]A \end{bmatrix} = \begin{bmatrix} 1[2-1-4]+2[-1/2] \\ [\frac{1}{2}[2-1-4]+1[-1/2] \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(iv)
$$(B \cdot A)^2$$

 $(2 \times 3)^2$ is undefined

$$(v) 2A^{T} + 8A^{T} \cdot B \qquad A^{T}B = \begin{bmatrix} [2 - 1] B \\ [-1 /2] B \\ [-4 2] B \end{bmatrix} = \begin{bmatrix} 2(1 2) - [/2 1] \\ -1(1 2) + 1/2 [/2 1] \end{bmatrix} = \begin{bmatrix} 3/2 & 3 \\ -3/4 & -3/2 \\ -4[1 2] + 2[1/2 1] \end{bmatrix} = \begin{bmatrix} 3/2 & 3 \\ -3/4 & -3/2 \\ -3 & -6 \end{bmatrix}$$

$$2A^{T} + 8A^{T}B = \begin{bmatrix} 4 - 2 \\ -2 & 1 \\ -8 & 4 \end{bmatrix} + \begin{bmatrix} 12 & 24 \\ -6 & -12 \\ -24 & -48 \end{bmatrix} = \begin{bmatrix} 16 & 22 \\ -8 & -11 \\ -37 & -44 \end{bmatrix}$$

(vi) $A^T \cdot B^T$.

(vii) How are the matrices $B \cdot A$ and $A^T \cdot B^T$ related? Justify your answer.

$$A^TB^T = (BA)^T$$

5. Let A be the vector space consisting of column vectors of length 4 and let B be the vector space of column vectors of length 3. Consider the function $f:A\longrightarrow B$ given by

$$f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + 4x_2 + 2x_3 + 2x_4 \\ x_1 + 2x_2 + 2x_3 + 2x_4 \\ x_1 + 2x_2 + x_3 + 2x_4 \end{bmatrix} \qquad \text{f:} \mathbb{R}^4 \to \mathbb{R}^3$$

(a) What is the domain of f? What is the codomain?

(b) Determine $f(\vec{e_i})$ for i=1,2,3,4 for the standard basis $\{\vec{e_1},\vec{e_2},\vec{e_3},\vec{e_4}\}$ of \mathbb{R}^4 written as column vectors.

$$f(\vec{e_i}) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, f(\vec{e_2}) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, f(\vec{e_3}) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, f(\vec{e_4}) = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

(c) Using (b), write down the standard matrix M such that $f(\vec{\mathbf{x}}) = M \cdot \vec{\mathbf{x}}$.

$$M = \begin{bmatrix} 2 & 4 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 1 & 2 \end{bmatrix}$$

(d) Determine the rank of M.

(e) Is the function f one-to-one? Explain. \nearrow

(f) Is the function f onto? Explain. YES

6. Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 2 & 0 & 2 & 1 \end{bmatrix}$.

(a) Find A^{-1} and check your result.

$$\begin{bmatrix} A: I_2 \end{bmatrix} = \begin{bmatrix} 1 & 3: 10 \\ 2 & 7: 01 \end{bmatrix} \quad I_2 = R_2 - 2R_1 \quad \begin{bmatrix} 1 & 3: 1 & 0 \\ 0 & 1: -2 & 1 \end{bmatrix} \quad I_1 = R_1 - 3R_2$$

$$\begin{bmatrix} 10: 7 - 3 \\ 01: -2 & 1 \end{bmatrix} = \begin{bmatrix} I_2 : A^{-1} \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 7 - 3 \\ 1 \end{bmatrix}$$

$$Check: AA^{-1} = A^{-1}A = I_2$$

(b) Use your work from part (a) to express A^{-1} and then A as a product of elementary matrices.

$$G = R_2 - 2R_1$$
 corresponds to multiplication by $E_1 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$
 $\Gamma_1 = R_1 - 3R_2$ " " $E_2 = \begin{bmatrix} 1 & -3 \\ -1 & 1 \end{bmatrix}$

$$A^{-1} = E_2 E_1$$

 $A = E_1^{-1} E_2^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$

(c) Solve the matrix equation AX = B using A^{-1} from part (a). (You must use A^{-1} , not any other method.)

$$AX=B \Rightarrow A^{-1}AX=A^{-1}B$$

 $\Rightarrow X=A^{-1}B = with commutativity!$