Alex Schaefer

Department of Mathematics Binghamton University

August 3, 2015

Alex Schaefer Non-Transitive Dice and Directed Graphs

→ Ξ > < Ξ >

э

Image: Image:

Alex Schaefer Non-Transitive Dice and Directed Graphs

→ ∃ > < ∃ >

< 17 ▶

∍

Outline

Alex Schaefer Non-Transitive Dice and Directed Graphs

(日) (四) (日) (日) (日)

∍

Introduction

• The original phenomenon that was explored is that of *non-transitive dice*, an idea first introduced by Martin Gardner.

▲ 伺 ▶ ▲ 国 ▶ ▲ 国 ▶

Introduction

- The original phenomenon that was explored is that of *non-transitive dice*, an idea first introduced by Martin Gardner.
- The concept is (perhaps) best explained in terms of a game.

▲ 伺 ▶ ▲ 国 ▶ ▲ 国 ▶

Introduction

- The original phenomenon that was explored is that of *non-transitive dice*, an idea first introduced by Martin Gardner.
- The concept is (perhaps) best explained in terms of a game.
- I will take this concept and extrapolate it to a different setting (directed graphs).

< 回 > < 回 > < 回 >

Non-Transitive Dice and Probabilities

• A set of dice D is a triple of *n*-sided dice, using the numbers of [3*n*] each exactly once.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of *n*-sided dice, using the numbers of [3*n*] each exactly once.

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of *n*-sided dice, using the numbers of [3*n*] each exactly once.
- Let P(A ≻ B) be: the probability that die A rolls a higher number than die B.

• = • • = •

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of *n*-sided dice, using the numbers of [3*n*] each exactly once.
- Let P(A ≻ B) be: the probability that die A rolls a higher number than die B.
- Note that:

•
$$P(A \succ B) + P(B \succ A) = 1.$$

• = • • = •

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of *n*-sided dice, using the numbers of [3*n*] each exactly once.
- Let P(A ≻ B) be: the probability that die A rolls a higher number than die B.
- Note that:
 - $P(A \succ B) + P(B \succ A) = 1.$
 - The outcomes of our game can then be given by $P(A \succ B)$, $P(B \succ C)$, and $P(C \succ A)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of *n*-sided dice, using the numbers of [3*n*] each exactly once.
- Let P(A ≻ B) be: the probability that die A rolls a higher number than die B.
- Note that:
 - $P(A \succ B) + P(B \succ A) = 1.$
 - The outcomes of our game can then be given by $P(A \succ B)$, $P(B \succ C)$, and $P(C \succ A)$.
- In the above example, $P(A \succ B) = \frac{21}{36}$, $P(B \succ C) = \frac{21}{36}$, and $P(C \succ A) = \frac{25}{36}$.

Issues with this example:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Balance

• Issues with this example:

• $P(A \succ B) + P(A \succ C)$, $P(B \succ C) + P(B \succ A)$, and $P(C \succ A) + P(C \succ B)$.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

3

Balance

- Issues with this example:
 - $P(A \succ B) + P(A \succ C)$, $P(B \succ C) + P(B \succ A)$, and $P(C \succ A) + P(C \succ B)$.
 - It'd be nice if those were equal, which is equivalent to:

(日) (四) (日) (日) (日)

Balance

- Issues with this example:
 - $P(A \succ B) + P(A \succ C)$, $P(B \succ C) + P(B \succ A)$, and $P(C \succ A) + P(C \succ B)$.
 - It'd be nice if those were equal, which is equivalent to:
 - $P(A \succ B) = P(B \succ C) = P(C \succ A)$, which we will call the "victorious probability".

< ロ > < 同 > < 回 > < 回 > < 回 > <

Balance

- Issues with this example:
 - $P(A \succ B) + P(A \succ C)$, $P(B \succ C) + P(B \succ A)$, and $P(C \succ A) + P(C \succ B)$.
 - It'd be nice if those were equal, which is equivalent to:
 - $P(A \succ B) = P(B \succ C) = P(C \succ A)$, which we will call the "victorious probability".
- This condition will be called *balance*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Balance

- Issues with this example:
 - $P(A \succ B) + P(A \succ C)$, $P(B \succ C) + P(B \succ A)$, and $P(C \succ A) + P(C \succ B)$.
 - It'd be nice if those were equal, which is equivalent to:
 - $P(A \succ B) = P(B \succ C) = P(C \succ A)$, which we will call the "victorious probability".
- This condition will be called *balance*.
 - A: 18 14 11 7 4 3
- B: 17 13 10 9 6 2 has victorious probability $\frac{19}{36}$.
 - C: 16 15 12 8 5 1

・ 同 ト ・ ヨ ト ・ ヨ ト ・

BntD's

• BntD(1)/BntD(2)...no.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

BntD's

BntD(1)/BntD(2)...no.
BntD(3)'s:

ヘロト 人間 とくほ とくほ とう

€ 990

BntD's

BntD(1)/BntD(2)...no.
BntD(3)'s:

A: 9 5 1
B: 8 4 3,
C: 7 6 2
A: 9 4 2
B: 8 6 1.
C: 7 5 3

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

BntD's

- BntD(1)/BntD(2)...no.
- BntD(3)'s:
 - - C: 7 6 2
 - A: 9 4 2
 - B: 8 6 1. C: 7 5 3
 - Both with victorious probability $\frac{5}{9}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

I na ∩

BntD's

BntD(1)/BntD(2)...no. BntD(3)'s: C: 7 6 2 A: 9 4 2 • B: 8 6 1. C: 7 5 3• Both with victorious probability $\frac{5}{6}$. *A* : 12 10 3 1 ● A BntD(4): *B* : 9 8 7 2 , v.p. $\frac{9}{16}$. C: 11 6 5 4

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

BntD's

 BntD(1)/BntD(2)no. BntD(3)'s: 								
• Ditte	A :	.9	5	1				
٩	B :	8	4	3.				
	C :	7	6	2				
	A :	9	4	2				
٩	B :	8	6	1.				
	C :	7	5	3				
• Both with victorious probability $\frac{5}{9}$.								
			A :	12	10	3	1	
A BntD(4):			B :	9	8	7	2	, v.p. <u>9</u>
			C :	11	6	5	4	
			A :	15	11	7	4	3
• A BntD(5):			B :	14	10	9	5	2 . v.p. ¹³ / ₅₅ .
			C :	13	12	8	6	1 · · · · · · · · · · · · · · · · · · ·

Outline

Alex Schaefer Non-Transitive Dice and Directed Graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

∍

Concatenation Lemmas

• Concatenation of two sets of dice: $D_{\sigma} = \begin{cases} A: 9 \ 5 \ 1 \\ B: 8 \ 4 \ 3 \\ C: 7 \ 6 \ 2 \end{cases}, D_{\rho} = \begin{cases} A: 9 \ 4 \ 2 \\ B: 8 \ 6 \ 1 \\ C: 7 \ 5 \ 3 \end{cases}$

▲■▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Concatenation Lemmas

• Concatenation of two sets of dice:

$$D_{\sigma} = \begin{cases}
A: 9 5 1 \\
B: 8 4 3 , D_{\rho} = \begin{cases}
A: 9 4 2 \\
B: 8 6 1 \\
C: 7 6 2
\end{cases}$$
• $D_{\rho\sigma} = \begin{cases}
A: 18 14 10 \\
B: 17 13 12 \\
C: 16 15 11
\end{cases}$
9 4 2
8 6 1.
7 5 3

Alex Schaefer Non-Transitive Dice and Directed Graphs

.

э

ヨトイヨト

< 17 ▶

Concatenation Lemmas

• Concatenation of two sets of dice:

$$D_{\sigma} = \begin{cases}
A: 9 5 1 \\
B: 8 4 3 , D_{\rho} = \begin{cases}
A: 9 4 2 \\
B: 8 6 1 \\
C: 7 6 2
\end{cases}$$
• $D_{\rho\sigma} = \begin{cases}
A: 18 14 10 \\
B: 17 13 12 \\
C: 16 15 11
\end{cases}$
9 4 2
8 6 1.
7 5 3

Lemmas (S. 2011)

Concatenation preserves both balance and non-transitivity.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Existence

Existence Theorem

Theorem (S. 2011)

There exists a BntD(*n*) for every $n \ge 3$.

Alex Schaefer Non-Transitive Dice and Directed Graphs

э

Existence Theorem

Theorem (S. 2011)

There exists a BntD(*n*) for every $n \ge 3$.

• We have given BntD(n)'s for n = 3, 4, 5.

(日) (四) (日) (日) (日)

Existence Theorem

Theorem (S. 2011)

There exists a BntD(*n*) for every $n \ge 3$.

- We have given BntD(n)'s for n = 3, 4, 5.
- By lemmas, concatenation of two BntD's is a BntD.

▲ 伺 ▶ ▲ 国 ▶ ▲ 国 ▶

Existence

Existence Theorem

Theorem (S. 2011)

There exists a BntD(*n*) for every $n \ge 3$.

Alex Schaefer Non-Transitive Dice and Directed Graphs

(日) (四) (日) (日) (日)

э

Directed Graphs

Outline

Alex Schaefer Non-Transitive Dice and Directed Graphs

< 🗇 ▶

→ Ξ > < Ξ >

∍

Directed Graphs

• Our BntD(*n*)'s could be viewed as directed 3-cycles.

Alex Schaefer Non-Transitive Dice and Directed Graphs

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Directed Graphs

- Our BntD(*n*)'s could be viewed as directed 3-cycles.
- The statement then says we can build a set of dice that *realizes* the edges of this directed graph.

(日) (四) (日) (日) (日)

Directed Graphs

- Our BntD(*n*)'s could be viewed as directed 3-cycles.
- The statement then says we can build a set of dice that *realizes* the edges of this directed graph.
- Next natural question: more vertices (more dice)?

・ 同 ト ・ ヨ ト ・ ヨ ト
More Dice?

Alex Schaefer Non-Transitive Dice and Directed Graphs

・ 同 ト ・ ヨ ト ・ ヨ ト …

I na ∩

More Dice?

	Α	: 4	4	4	4	0	0	
 Efron's Dice 	B	: 3	3	3	3	3	3	
	'. С	: 6	6	2	2	2	2 .	
	D	: 5	5	5	1	1	1	
Currend to:	A :	19	18	17	7	16	2	1
	B :	15	14	1:	3	12	11	10
Expand to.	C :	24	23	9)	8	7	6
	D :	22	21	20	0	5	4	3

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

More Dice?

			A	: 4	4	4	4	4	0	0	
•	Efron's Dice:		В	: (3	3	3	3	3	3	
			С	: (6	6	2	2	2	2	•
			D	: {	5	5	5	1	1	1	
• Expand to:		Α	:	19)	18	1	7	16	2	1
	Expand to:	В	:	15)	14	1;	3	12	11	10
	Expand to.	С	:	24		23	9)	8	7	6
		D	:	22		21	20	0	5	4	3

• Suitably modify definitions to: $BntD_m(n)$.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

3

Non-Transitive Dice and Directed Graphs

Directed Graphs

More more dice?

• BntD₄(3):
$$A: 12 5 2$$

 $B: 11 8 1$
 $C: 10 7 3$
 $D: 9 6 4$

Alex Schaefer Non-Transitive Dice and Directed Graphs

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト -

More more dice?

• BntD₄(3):
A: 12 5 2

$$B: 11 8 1$$

 $C: 10 7 3$,
 $D: 9 6 4$
A: 16 10 7 1
 $B: 15 9 6 4$
 $C: 14 12 5 3$,
 $D: 13 11 8 2$

ヘロト 人間 ト 人 ヨト 人 ヨト

More more dice?

• BntD ₄ (3):	A :	12	5	2		
	B :	11	8	1		
	C :	10	7	3'		
	D :	9	6	4		
• BntD ₄ (4):	A :	16	10	7	1	
	B :	15	9	6	4	
	C :	14	12	5	3'	
	D :	13	11	8	2	
• BntD ₄ (5):	A :	20	13	10	6	4
	B :	19	15	9	8	3
	C :	18	16	12	5	1
	D :	17	14	11	7	2

.

ヘロト 人間 ト 人 ヨト 人 ヨト

Non-Transitive Dice and Directed Graphs

Directed Graphs

More more dice?

・ ロ ト ・ 雪 ト ・ 目 ト

э

The Cycle Question

As it turns out, any directed *m*-cycle is realizable with *n* balanced dice (both ≥ 3), giving the following:

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Cycle Question

As it turns out, any directed *m*-cycle is realizable with *n* balanced dice (both ≥ 3), giving the following:

Theorem (S. 2011)

Let $m, n \ge 3$. Then there exits a $BntD_m(n)$.

۲

(日) (四) (日) (日) (日)

The Cycle Question

As it turns out, any directed *m*-cycle is realizable with *n* balanced dice (both ≥ 3), giving the following:

Theorem (S. 2011)

Let $m, n \ge 3$. Then there exits a $BntD_m(n)$.

٩

• Proof: By induction.

(日) (四) (日) (日) (日)

Induction Example

Alex Schaefer Non-Transitive Dice and Directed Graphs

▶ < ≣ ▶ ...

э

Induction Example

The dice related to *D* are *A* and *C*, requiring that *C* ≻ *D*,
 D ≻ *A*. But as *C* ≻ *A* already, this is a total ordering:
 C > *D* > *A*.

Induction Example

- The dice related to *D* are *A* and *C*, requiring that *C* ≻ *D*,
 D ≻ *A*. But as *C* ≻ *A* already, this is a total ordering:
 C > *D* > *A*.
- So, because C ≻ A, we step outside N to make D numerically "similar" to C, but "inferior" to it:

$$\begin{array}{cccc} A: & 9 & 5 \\ C: & 7 & 6 \end{array}$$

D: 6.9 5.9 2.1

ヨト イヨト

Induction Example

- The dice related to *D* are *A* and *C*, requiring that *C* ≻ *D*,
 D ≻ *A*. But as *C* ≻ *A* already, this is a total ordering:
 C > *D* > *A*.
- So, because C ≻ A, we step outside N to make D numerically "similar" to C, but "inferior" to it:

D: 6.9 5.9 2.1

- Insert our new die into the mix:
- A: 9 5 1 B: 8 4 3 C: 7 6 2 D: 6.9 5.9 2.1

< ロ > < 部 > < き > < き > -

€ 990

Alex Schaefer Non-Transitive Dice and Directed Graphs

• Insert our new die into the mix:
$$\begin{array}{cccc} A: & 9 & 5 & 1 \\ B: & 8 & 4 & 3 \\ C: & 7 & 6 & 2 \\ D: & 6.9 & 5.9 & 2.1 \end{array}$$

• Finally, re-label linearly:

$$\begin{array}{ccccc} A: & 9 & 5 & 1 \\ A: & 9 & 5 & 1 \\ B: & 8 & 4 & 3 \\ C: & 7 & 6 & 2 \end{array} \xrightarrow{B:} \begin{array}{ccccc} 11 & 5 & 4 \\ C: & 7 & 6 & 2 \end{array} \xrightarrow{B:} \begin{array}{ccccc} 11 & 5 & 4 \\ C: & 7 & 6 & 2 \end{array}$$

▲ロト▲園と▲目と▲目と 目 めんの

A General Question

• *Tournament*: a copy of the complete graph on *m* vertices K_m , where each edge is given an orientation from one incident vertex to the other.

A General Question

- *Tournament*: a copy of the complete graph on *m* vertices K_m , where each edge is given an orientation from one incident vertex to the other.
- Given an arbitrary tournament, does it have a *realization* as dice? Balanced dice??

A General Question

- *Tournament*: a copy of the complete graph on *m* vertices K_m , where each edge is given an orientation from one incident vertex to the other.
- Given an arbitrary tournament, does it have a *realization* as dice? Balanced dice??
- Because acyclic graphs correspond to total (well) orderings, they are trivially realizable, even by one-sided dice. However, the condition of balance (all victorious probabilities equal) has no meaning here.

A Few Cases Answered

 Any tournament T₃ is either acyclic, which is realizable, or it is a directed 3-cycle (a BntD(n)).

・ 同 ト ・ ヨ ト ・ ヨ ト

э

A Few Cases Answered

• A *T*₄:

Alex Schaefer Non-Transitive Dice and Directed Graphs

ヘロト 人間 ト 人 ヨト 人 ヨト

A Few Cases Answered

• A *T*₄:

• Up to isomorphism, there are 4 of them.

Alex Schaefer Non-Transitive Dice and Directed Graphs

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

A Few Cases Answered

• A *T*₄:

- Up to isomorphism, there are 4 of them.
- One is acyclic√

・ ロ ト ・ 雪 ト ・ 目 ト ・

3

A Few Cases Answered

• A *T*₄:

- Up to isomorphism, there are 4 of them.
- One is acyclic√
- One is a 3-cycle, plus a "powerhouse" \checkmark

・ 同 ト ・ ヨ ト ・ ヨ ト

э

A Few Cases Answered

• A T₄:

- Up to isomorphism, there are 4 of them.
- One is acyclic√
- One is a 3-cycle, plus a "powerhouse" \checkmark
- One is a 3-cycle, plus a "loser"√

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

A Few Cases Answered

• A T₄:

- Up to isomorphism, there are 4 of them.
- One is acyclic√
- One is a 3-cycle, plus a "powerhouse" √
- One is a 3-cycle, plus a "loser" \checkmark
- Only one has a 4-cycle, so that is a $BnD_4(n)\checkmark$

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

A Few Cases Answered

• The real issue...

Alex Schaefer Non-Transitive Dice and Directed Graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Tournaments

Outline

Alex Schaefer Non-Transitive Dice and Directed Graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

∍

Tournaments

The Ignored Structure

With 4 dice,
 A: 12 6 1
 B: 11 5 4
 C: 10 8 2
 D: 9 7 3

→ ∃ > < ∃ >

3

-Tournaments

The Ignored Structure

With 4 dice,
A: 12 6 1
B: 11 5 4
C: 10 8 2
D: 9 7 3
A ≻ B ≻ C ≻ D ≻ A.

→ Ξ → < Ξ →</p>

∍

Tournaments

The Ignored Structure

- With 4 dice,
 A: 12 6 1
 B: 11 5 4
 C: 10 8 2
 D: 9 7 3
- $A \succ B \succ C \succ D \succ A$.
- How do A, C relate? B, D?

ヨト イヨト ニヨ

Tournaments

The Ignored Structure

- With 4 dice.
 - A: 12 6 1
 - *B*: 11 5 4
- C: 10 8 2
 - D: 9 7 3
- $A \succ B \succ C \succ D \succ A$.
- How do A, C relate? B, D?
- Is it forced or can it be manipulated?

 $\equiv \rightarrow$

Non-Transitive Dice and Directed Graphs

-Tournaments

The New Question

• Can an arbitrary orientation of *K_n* be constructed with a set of dice?

Alex Schaefer Non-Transitive Dice and Directed Graphs

I ≡ F <</p>

Non-Transitive Dice and Directed Graphs

- Tournaments

The New Question

- Can an arbitrary orientation of *K_n* be constructed with a set of dice?
- If so, we will call the given tournament *realizable*.

Tournaments

Connectedness

• Given a directed graph on *n* vertices, a *connected component* is a subset of the vertices for which any two contain a directed path between them (in both directions).

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

-Tournaments

Connectedness

- Given a directed graph on *n* vertices, a *connected component* is a subset of the vertices for which any two contain a directed path between them (in both directions).
- Alternately: a connected component is a set of vertices which form a maximal directed cycle.
Connectedness

- Given a directed graph on *n* vertices, a *connected component* is a subset of the vertices for which any two contain a directed path between them (in both directions).
- Alternately: a connected component is a set of vertices which form a maximal directed cycle.
- Belonging to a connected component is an equivalence relation.

Connectedness

- Given a directed graph on *n* vertices, a *connected component* is a subset of the vertices for which any two contain a directed path between them (in both directions).
- Alternately: a connected component is a set of vertices which form a maximal directed cycle.
- Belonging to a connected component is an equivalence relation.
- Viewing a component as one new vertex, and keeping all edges not contained in a component gives an acyclic directed graph.

Example

Alex Schaefer Non-Transitive Dice and Directed Graphs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Example

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

ヘロト 人間 トイヨト 人用 トーヨー

 \mapsto

Example

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Strong Tournaments

• A tournament is said to be *strong* if it has exactly 1 connected component.

(日) (四) (日) (日)

∍

Strong Tournaments

- A tournament is said to be *strong* if it has exactly 1 connected component.
- Alternately: a tournament is strong if and only if it contains a directed Hamilton cycle.

Strong Tournaments

- A tournament is said to be *strong* if it has exactly 1 connected component.
- Alternately: a tournament is strong if and only if it contains a directed Hamilton cycle.
- Note: a strong tournament then has a subgraph (obtained only by deleting edges) which is a directed cycle and thus can be realized with a set of balanced dice.

Strong Tournaments

- A tournament is said to be *strong* if it has exactly 1 connected component.
- Alternately: a tournament is strong if and only if it contains a directed Hamilton cycle.
- Note: a strong tournament then has a subgraph (obtained only by deleting edges) which is a directed cycle and thus can be realized with a set of balanced dice.
- We now recover the deleted edges.

How This Is Going To Work

• We will begin with a directed cycle, and construct a "traditional" set of dice.

(日) (四) (日) (日) (日)

э

How This Is Going To Work

- We will begin with a directed cycle, and construct a "traditional" set of dice.
- Then, we will check the number of victories for the pair of dice we wish to add as an edge in our tournament.

How This Is Going To Work

- We will begin with a directed cycle, and construct a "traditional" set of dice.
- Then, we will check the number of victories for the pair of dice we wish to add as an edge in our tournament.
- Then, we will add sides to those dice to alter the number of victories (or to ensure all dice end up with the same number of sides).

Algorithm Example

We start with a set of 5 dice. Note that every die has either 4 or 5 victories over any other.

Algorithm Example

Using a little foresight, we shift our labels up by 10.

	A :	25	17	11
	B :	24	16	15
\rightarrow	C :	23	20	12
	D :	22	19	13
	F·	21	18	14

ъ

Algorithm Example

The first edge we choose to add requires $A \succ C$.

	A :	?	25	17	11	?
	B :		24	16	15	
\rightarrow	C :	?	23	20	12	?
	D :		22	19	13	
	E :		21	18	14	

Algorithm Example

 $A \succ C$ means we place the larger of $\{26, 27\}$ on *A*. *A* only had 4 victories over *C*, so we place the larger of $\{9, 10\}$ on *A* to add one more.

	A :	27	25	17	11	10
	B :		24	16	15	
\rightarrow	C :	26	23	20	12	9
	D :		22	19	13	
	E :		21	18	14	

You might worry how this affects the relationship between say, *A* and *B*. We'll discuss that in a moment.

Algorithm Example

The next edge requires that $B \succ D$.

?
9
?

 $\exists \rightarrow$

Algorithm Example

 $B \succ D$ means we place the larger of {28, 29} on *B*. This time, *B* already had 5 victories over *D*, so we place the *smaller* of {7, 8} on *B*.

Now, look back to A and B.

	A :	27	25	17	11	10
	B :	29	24	16	15	7
\rightarrow	C :	26	23	20	12	9
	D :	28	22	19	13	8
	E :		21	18	14	

Algorithm Example

The next edge we choose is $B \succ E$.

A :		27	25	17	11	10
B :	?	29	24	16	15	7
C :		26	23	20	12	9
D :		28	22	19	13	8
E :		?	21	18	14	?

?

 $\exists \mapsto$

Algorithm Example

 $B \succ E$ means we place the larger of $\{30, 31\}$ on *B*. *B* originally had 5 victories over *E*, so we place the smaller of $\{5, 6\}$ on *B*.

Algorithm Example

The next edge we add is $C \succ E$.

A :		27	25	17	11	10	
B :	31	29	24	16	15	7	5
C :	?	26	23	20	12	9	?
D :		28	22	19	13	8	
E :	?	30	21	18	14	6	?

 $\exists \mapsto$

Algorithm Example

 $C \succ E$ means we place the larger of {32, 33} to *C*. *C* had 5 victories over *E*, so give it the smaller of {3,4}.

Algorithm Example

Lastly, we add $A \succ D$.

A :	?	27	25	17	11	10	?
B :	31	29	24	16	15	7	5
C :	33	26	23	20	12	9	3
D :	?	28	22	19	13	8	?
E :	32	30	21	18	14	6	4

ヨトイヨト

∍

Algorithm Example

 $A \succ D$ means A gets the larger of {34,35}. A had 4 victories over D, so it gets the larger of {1,2}.

A :	35	27	25	17	11	10	2
B :	31	29	24	16	15	7	5
C :	33	26	23	20	12	9	3
D :	34	28	22	19	13	8	1
E :	32	30	21	18	14	6	4

Algorithm Example

We have constructed a set of balanced dice such that the probabilities correspond exactly with the direction of the edges.

A :	35	27	25	17	11	10	2
B :	31	29	24	16	15	7	5
C :	33	26	23	20	12	9	3
D :	34	28	22	19	13	8	1
E :	32	30	21	18	14	6	4

Non-Strong Tournaments

• If a tournament is not strong, *it is acyclic on its strong components*.

・ ロ ト ・ 雪 ト ・ 目 ト ・

э

Non-Strong Tournaments

- If a tournament is not strong, *it is acyclic on its strong components*.
- Then, do the following:

(日) (四) (日) (日) (日)

э

Non-Strong Tournaments

- If a tournament is not strong, it is acyclic on its strong components.
- Then, do the following:

Take the subgraphs consisting of each strong component.

Non-Strong Tournaments

- If a tournament is not strong, it is acyclic on its strong components.
- Then, do the following:

- Take the subgraphs consisting of each strong component.
- Perform the above algorithm on them.

(4 同) (ヨ) (ヨ)

Non-Strong Tournaments

- If a tournament is not strong, it is acyclic on its strong components.
- Then, do the following:

 - Take the subgraphs consisting of each strong component.
 - Perform the above algorithm on them.
 - Concatenate in acyclic (total) order.

< 回 > < 回 > < 回 >

Balance In Tournaments

• The algorithm maintains balance!

3

Balance In Tournaments

- The algorithm maintains balance!
- So, if the tournament is strong, it can be realized with *balanced* dice.

(日) (四) (日) (日) (日)

э

Balance In Tournaments

- The algorithm maintains balance!
- So, if the tournament is strong, it can be realized with *balanced* dice.
- If the tournament is not strong, balance is impossible.

Incomplete Directed Graphs

• An arbitrary directed graph isn't a problem.

Alex Schaefer Non-Transitive Dice and Directed Graphs

・ ロ ト ・ 雪 ト ・ 目 ト ・

э
-Tournaments

Incomplete Directed Graphs

- An arbitrary directed graph isn't a problem.
- Consider it as a subgraph of a tournament on the same vertex set.

(4 同) (4 回) (4 回)

-Tournaments

The End Result

Theorem (S. 2012):

Let G be a directed graph. Then there is a set of dice which realizes G. Further, the dice are balanced if and only if G is a subgraph of a strong tournament on the same vertex set.

・ 同 ト ・ ヨ ト ・ ヨ ト

Tournaments

Thank You!

Alex Schaefer Non-Transitive Dice and Directed Graphs

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト -

€ 990