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Introduction

@ The original phenomenon that was explored is that of
non-transitive dice, an idea first introduced by Martin
Gardner.
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Introduction

@ The original phenomenon that was explored is that of
non-transitive dice, an idea first introduced by Martin
Gardner.

@ The concept is (perhaps) best explained in terms of a
game.
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L Introduction

Introduction

@ The original phenomenon that was explored is that of
non-transitive dice, an idea first introduced by Martin
Gardner.

@ The concept is (perhaps) best explained in terms of a
game.

@ | will take this concept and extrapolate it to a different
setting (directed graphs).
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Non-Transitive Dice and Probabilities

@ A set of dice D is a triple of n-sided dice, using the
numbers of [3n] each exactly once.
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L Introduction

Non-Transitive Dice and Probabilities

@ A set of dice D is a triple of n-sided dice, using the
numbers of [3n] each exactly once.
A: 18 9 8 7 6 5
eD= B: 17 16 15 4 3 2.
C: 14 13 12 11 10 1
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L Introduction

Non-Transitive Dice and Probabilities

@ A set of dice D is a triple of n-sided dice, using the
numbers of [3n] each exactly once.
A: 18 9 8 7 6 5
eD= B: 17 16 15 4 3 2.
C: 14 13 12 11 10 1

@ Let P(A > B) be: the probability that die A rolls a higher
number than die B.
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L Introduction

Non-Transitive Dice and Probabilities

@ A set of dice D is a triple of n-sided dice, using the
numbers of [3n] each exactly once.
A: 18 9 8 7 6 5
eD= B: 17 16 15 4 3 2.
C: 14 13 12 11 10 1
@ Let P(A > B) be: the probability that die A rolls a higher
number than die B.
@ Note that:
@ P(A>B)+ P(B > A)=1.
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L Introduction

Non-Transitive Dice and Probabilities

@ A set of dice D is a triple of n-sided dice, using the
numbers of [3n] each exactly once.

A:. 18 9 8 7 6 5
eD= B: 17 16 15 4 3 2.
C: 14 13 12 11 10 1
@ Let P(A > B) be: the probability that die A rolls a higher
number than die B.
@ Note that:
@ P(A>B)+ P(B > A)=1.
@ The outcomes of our game can then be given by P(A >~ B),
P(B > C),and P(C = A).
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L Introduction

Non-Transitive Dice and Probabilities

@ A set of dice D is a triple of n-sided dice, using the
numbers of [3n] each exactly once.
A:. 18 9 8 7 6 5
eD= B: 17 16 15 4 3 2.
C: 14 13 12 11 10 1
@ Let P(A > B) be: the probability that die A rolls a higher
number than die B.
@ Note that:
@ P(A-B)+P(B>~A)=1.
@ The outcomes of our game can then be given by P(A - B),
P(B > C),and P(C = A).
@ In the above example P(A- B) =, P(B~ C) = &}, and
P(C - A) = 2.
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@ Issues with this example:
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L Introduction

Balance

@ Issues with this example:
@ P(A-B)+P(A> C),P(B> C)+ P(B > A), and
P(C - A) + P(C >~ B).
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L Introduction

Balance

@ Issues with this example:
@ P(A-B)+P(A> C),P(B> C)+ P(B > A), and
P(C - A) + P(C >~ B).
@ It'd be nice if those were equal, which is equivalent to:
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L Introduction

Balance

@ Issues with this example:
@ P(A-B)+P(A> C),P(B> C)+ P(B > A), and
P(C - A) + P(C >~ B).
@ It'd be nice if those were equal, which is equivalent to:
@ P(A> B)=P(B> C)= P(C > A), which we will call the
“victorious probability”.
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L Introduction

Balance

@ Issues with this example:
@ P(A-B)+P(A> C),P(B> C)+ P(B > A), and
P(C - A) + P(C >~ B).
@ It'd be nice if those were equal, which is equivalent to:
@ P(A> B)=P(B> C)= P(C > A), which we will call the
“victorious probability”.

@ This condition will be called balance.
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L Introduction

Balance

@ Issues with this example:
@ P(A-B)+P(A> C),P(B> C)+ P(B > A), and
P(C > A)+ P(C > B).
@ It'd be nice if those were equal, which is equivalent to:
@ P(A> B)=P(B> C)= P(C > A), which we will call the
“victorious probability”.
@ This condition will be called balance.
A: 18 14 11 7 4 3
@ B: 17 13 10 9 6 2 has victorious probability 32.
C: 16 15 12 8 5 1
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L Introduction

BntD’s

@ BntD(1)/BntD(2). .. no.
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BntD’s

@ BntD(1)/BntD(2). .. no.
@ BntD(3)’s:
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L Introduction

BntD’s

@ BntD(1)/BntD(2). .. no.
@ BntD(3)’s:
A: 9 5 1
@ B: 8 4 3,
C: 7 6 2
A: 9 4 2
e B: 8 6 1.
Cc: 7 5 3
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L Introduction

BntD’s

@ BntD(1)/BntD(2). .. no.
@ BntD(3)’s:
A: 9 5 1
@ B: 8 4 3,
C: 7 6 2
A: 9 4 2
e B: 8 6 1.
Cc: 7 5 3

@ Both with victorious probability 3.
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L Introduction

BntD’s

@ BntD(1)/BntD(2). .. no.
@ BntD(3)’s:
A: 9 5 1
@ B: 8 4 3,
C: 7 6 2
A: 9 4 2
e B: 8 6 1.
Cc: 7 5 3

@ Both with victorious probability 3.
A: 12 10 3 1
@ ABntD@4): B: 9 8 7 2,vp. .
C: 11 6 5 4
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L Introduction

BntD’s

@ BntD(1)/BntD(2). .. no.
@ BntD(3)’s:
A: 9 5 1
e B: 8 4 3,
C: 7 6 2
A: 9 4 2
e B: 8 6 1.
Cc: 7 5 3
@ Both with victorious probability 3.
A: 12 10 3 1
@ ABntD@4): B: 9 8 7 2,vp. .
C: 11 6 5 4
A: 15 11 7 4 3
@ ABntD(5): B: 14 10 9 5 2 ,vp. 2.
C: 13 12 8 6 1
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Concatenation Lemmas

@ Concatenation of two sets of dice:

A: 9 5 1 A 9 4 2
D,=< B: 8 4 3, D,=¢ B: 8 6 1
C: 7 6 2 cC: 753
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L Existence

Concatenation Lemmas

@ Concatenation of two sets of dice:

A: 9 5 1 A: 9 4 2
D,={ B: 8 43 ,D,={ B: 86 1.
C: 7 6 2 C: 75 3
A: 18 14 10| 9 4 2
ong{B; 17 13 12| 8 6 1.
C: 16 15 11| 7 5 3
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L Existence

Concatenation Lemmas

@ Concatenation of two sets of dice:

9 5 1 A9 4 2
D,={ B: 8 4 3,D,={ B: 86 1.
C: 7 6 2 C: 753
A 18 14 10| 9 4 2
ong{B; 17 13 12| 8 6 1
C: 16 15 11| 7 5 3

Lemmas (S. 2011)
Concatenation preserves both balance and non-transitivity.

(*]
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Existence Theorem

Theorem (S. 2011)
There exists a BntD(n) for every n > 3.
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L Existence

Existence Theorem

Theorem (S. 2011)
There exists a BntD(n) for every n > 3.

@ We have given BntD(n)’s for n = 3,4, 5.
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L Existence

Existence Theorem

Theorem (S. 2011)
There exists a BntD(n) for every n > 3.

@ We have given BntD(n)’s for n = 3,4, 5.
@ By lemmas, concatenation of two BntD’s is a BntD.
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L Existence

Existence Theorem

Theorem (S. 2011)
There exists a BntD(n) for every n > 3.
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Outline

9 Directed Graphs
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Cycles

@ Our BntD(n)’s could be viewed as directed 3-cycles.
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Cycles

@ Our BntD(n)’s could be viewed as directed 3-cycles.

@ The statement then says we can build a set of dice that
realizes the edges of this directed graph.
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L Directed Graphs

Cycles

@ Our BntD(n)’s could be viewed as directed 3-cycles.

@ The statement then says we can build a set of dice that
realizes the edges of this directed graph.

@ Next natural question: more vertices (more dice)?
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More Dice?

@ Efron’s Dice:

OO m>
oo WA
oo WA
on WA
“- N wh
N wo
N wo
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More Dice?

A: 4 4 4 4 00
.~ . B: 333333
@ Efron’s Dice: C- 662292 2"
D: 5551 1 1
A: 19 18 17 16 2 1
® Expand to- B: 15 14 13 12 11 10
Xpandlo- . o4 23 9 8 7 6
D: 22 21 20 5 4 3
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More Dice?

A: 4 4 4 4 0 0
.~ . B: 333333
@ Efron’s Dice: C- 662292 2"
D: 5551 1 1
19 18 17 16 2 1
15 14 13 12 11 10

@ Expand to: 54 23 9 8 7 6

22 21 20 5 4 3
@ Suitably modify definitions to: BntD,(n).

TOWm>
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More more dice?

A: 12 5 2
B: 11 8 1
@ BntD4(3): c: 10 7 3°
D: 9 6 4
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More more dice?

A:
B:
C:
D:
A:
B:
C:
D:
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@ BntDy(3): 10

= O N0 O
A W=D

o

16
15
14
13

©

@ BntDy(4):

— —
- N
o O100 N
NDNWhHr =
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More more dice?
A:
B:
C:
D :
A:
B:
C:
D:
A:
B:
C:
D:
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@ BntDy(3): 18 3
6

1

A W=D

9

16 7

15 9 6

@ BntDy(4): 14 12 5
8

1

13 11

20 13 6
19 156 9 8
18 16 12 5
17 14 11 7

@ BntDy4(5):

N = wWhH
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More more dice?

@ Concatenation arguments. ..
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The Cycle Question

@ As it turns out, any directed m-cycle is realizable with n
balanced dice (both > 3), giving the following:
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The Cycle Question

@ As it turns out, any directed m-cycle is realizable with n
balanced dice (both > 3), giving the following:

Theorem (S. 2011)
Let m, n > 3. Then there exits a BntDp(n).

*]
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The Cycle Question

@ As it turns out, any directed m-cycle is realizable with n
balanced dice (both > 3), giving the following:

Theorem (S. 2011)
Let m, n > 3. Then there exits a BntDp(n).

o
@ Proof: By induction.
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Induction Example

A 9 5 1 gfgg%
© B: 843 > o %7
c: 762 G762

D: 7 7 ?
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Induction Example

A: 9 5 1 gfgg%
© B: 843 > o %7
c: 762 G762

D: 7 7 ?

@ The dice related to D are A and C, requiring that C > D,
D ~ A. But as C = A already, this is a total ordering:
C>D>A
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Induction Example

A: 9 5 1 gfgg%
© B: 843 > o %7
c: 762 G762

D: 7 7 ?

@ The dice related to D are A and C, requiring that C > D,
D ~ A. But as C = A already, this is a total ordering:
C>D>A

@ So, because C - A, we step outside N to make D
numerically “similar” to C, but “inferior” to it:
A: 9 5 1

c. 7 6 2
D: 69 59 2.1

Alex Schaefer Non-Transitive Dice and Directed Graphs



Non-Transitive Dice and Directed Graphs
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Induction Example

A: 9 5 1 gfgg%
© B: 843 > o %7
c: 762 G762

D: 7 7 ?

@ The dice related to D are A and C, requiring that C > D,
D ~ A. But as C = A already, this is a total ordering:
C>D>A

@ So, because C - A, we step outside N to make D
numerically “similar” to C, but “inferior” to it:
A: 9 5 1

c. 7 6 2
D: 69 59 2.1
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A: 9 5 1

o . B: 8 4 3

@ Insert our new die into the mix: c. 7 6 5
D: 69 59 21

Alex Schaefer Non-Transitive Dice and Directed Graphs



Non-Transitive Dice and Directed Graphs
L Directed Graphs

A: 9 5 1

. .. B: 8 4 3

@ Insert our new die into the mix: c.- 7 & 5

D: 69 59 21

@ Finally, re-label linearly:

A: 9 5 1 A: 12 6 1
B: 8 4 3 B: 11 5 4
c. 7 6 2 7 C: 10 8 2
D: 69 59 21 D: 9 7 3
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A General Question

@ Tournament. a copy of the complete graph on m vertices
Km, where each edge is given an orientation from one
incident vertex to the other.
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A General Question

@ Tournament. a copy of the complete graph on m vertices
Km, where each edge is given an orientation from one
incident vertex to the other.

@ Given an arbitrary tournament, does it have a realization
as dice? Balanced dice??
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L Directed Graphs

A General Question

@ Tournament. a copy of the complete graph on m vertices
Km, where each edge is given an orientation from one
incident vertex to the other.

@ Given an arbitrary tournament, does it have a realization
as dice? Balanced dice??

@ Because acyclic graphs correspond to total (well)
orderings, they are trivially realizable, even by one-sided
dice. However, the condition of balance (all victorious
probabilities equal) has no meaning here.
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A Few Cases Answered

@ Any tournament T3 is either acyclic, which is realizable, or
it is a directed 3-cycle (a BntD(n)).
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A Few Cases Answered

OAT4I
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A Few Cases Answered

oA T4I
@ Up to isomorphism, there are 4 of them.
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A Few Cases Answered

oA T4I
@ Up to isomorphism, there are 4 of them.
@ One is acyclicv’
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A Few Cases Answered

oA T4I
@ Up to isomorphism, there are 4 of them.
@ One is acyclicv’
@ One is a 3-cycle, plus a “powerhouse”v’
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L Directed Graphs

A Few Cases Answered

oA T4I
@ Up to isomorphism, there are 4 of them.
@ One is acyclicv’
@ One is a 3-cycle, plus a “powerhouse”v’
@ One is a 3-cycle, plus a “loser’v’
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L Directed Graphs

A Few Cases Answered

oA T4I
@ Up to isomorphism, there are 4 of them.
@ One is acyclicv’
@ One is a 3-cycle, plus a “powerhouse”v’
@ One is a 3-cycle, plus a “loser’v’
@ Only one has a 4-cycle, so that is a BnD4(n)v’
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A Few Cases Answered

@ The real issue. ..
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6 Tournaments
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|—Tournaments

The Ignored Structure

@ With 4 dice,

A: 12 6 1
B: 11 5 4
C: 10 8 2
D: 9 7 3
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|—Tournaments

The Ignored Structure

@ With 4 dice,
A: 12 6 1
B: 11 5 4
C: 10 8 2
D: 9 7 3

@A~-B~C~D> A
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|—Tournaments

The Ignored Structure

@ With 4 dice,
A: 12 6 1
B: 11 5 4
C: 10 8 2
D: 9 7 3

@eA~B~C~D+~ A
@ How do A, C relate? B, D?
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|—Tournaments

The Ignored Structure

@ With 4 dice,
A: 12 6 1
B: 11 5 4
C: 10 8 2
D: 9 7 3

@A-B>~C>D>A.
@ How do A, C relate? B, D?
@ Is it forced or can it be manipulated?
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|—Tournaments

The New Question

e Can an arbitrary orientation of K, be
constructed with a set of dice?
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|—Tournaments

The New Question

e Can an arbitrary orientation of K, be

constructed with a set of dice?
@ If so, we will call the given tournament realizable.
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|—Tournaments

Connectedness

@ Given a directed graph on n vertices, a connected
componentis a subset of the vertices for which any two
contain a directed path between them (in both directions).
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|—Tournaments

Connectedness

@ Given a directed graph on n vertices, a connected
componentis a subset of the vertices for which any two
contain a directed path between them (in both directions).

@ Alternately: a connected component is a set of vertices
which form a maximal directed cycle.
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|—Tournaments

Connectedness

@ Given a directed graph on n vertices, a connected
componentis a subset of the vertices for which any two
contain a directed path between them (in both directions).

@ Alternately: a connected component is a set of vertices
which form a maximal directed cycle.

@ Belonging to a connected component is an equivalence
relation.
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|—Tournaments

Connectedness

@ Given a directed graph on n vertices, a connected
componentis a subset of the vertices for which any two
contain a directed path between them (in both directions).

@ Alternately: a connected component is a set of vertices
which form a maximal directed cycle.

@ Belonging to a connected component is an equivalence
relation.

@ Viewing a component as one new vertex, and keeping all
edges not contained in a component gives an acyclic
directed graph.
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Example
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Example
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Example
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Example
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|—Tournaments

Example

Alex Schaefer Non-Transitive Dice and Directed Graphs



Non-Transitive Dice and Directed Graphs

|—Tournaments

Strong Tournaments

@ Atournament is said to be strong if it has exactly 1
connected component.
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|—Tournaments

Strong Tournaments

@ Atournament is said to be strong if it has exactly 1
connected component.

@ Alternately: a tournament is strong if and only if it contains
a directed Hamilton cycle.
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|—Tournaments

Strong Tournaments

@ Atournament is said to be strong if it has exactly 1
connected component.

@ Alternately: a tournament is strong if and only if it contains
a directed Hamilton cycle.

@ Note: a strong tournament then has a subgraph (obtained
only by deleting edges) which is a directed cycle and thus
can be realized with a set of balanced dice.

Alex Schaefer Non-Transitive Dice and Directed Graphs



Non-Transitive Dice and Directed Graphs

|—Tournaments

Strong Tournaments

@ Atournament is said to be strong if it has exactly 1
connected component.

@ Alternately: a tournament is strong if and only if it contains
a directed Hamilton cycle.

@ Note: a strong tournament then has a subgraph (obtained
only by deleting edges) which is a directed cycle and thus
can be realized with a set of balanced dice.

@ We now recover the deleted edges.
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How This Is Going To Work

@ We will begin with a directed cycle, and construct a
“traditional” set of dice.
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How This Is Going To Work

@ We will begin with a directed cycle, and construct a
“traditional” set of dice.

@ Then, we will check the number of victories for the pair of
dice we wish to add as an edge in our tournament.
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How This Is Going To Work

@ We will begin with a directed cycle, and construct a
“traditional” set of dice.

@ Then, we will check the number of victories for the pair of
dice we wish to add as an edge in our tournament.

@ Then, we will add sides to those dice to alter the number of
victories (or to ensure all dice end up with the same
number of sides).
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Algorithm Example

We start with a set of 5 dice. Note that every die has either 4 or
5 victories over any other.

A
A: 15 7 1
E B B: 14 6 5
— C: 183 10 2
D: 12 9 3
E: 11 8 4
DX t
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Algorithm Example

Using a little foresight, we shift our labels up by 10.

A
A: 25 17 11
E B B: 24 16 15
— C: 283 20 12
D: 22 19 13
E: 21 18 14
D% t
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Algorithm Example

The first edge we choose to add requires A > C.

A
A: 7|25
E B B: 24
— C: 7|23
D : 22
E: 21
D¥ &

17
16
20
19
18

11 |7
15
12 |7
13
14
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Algorithm Example

A = C means we place the larger of {26,27} on A. A only had
4 victories over C, so we place the larger of {9,10} on A to add

one more.
A
A: 27|25 17
. . B: 24 16
— C: 26|23 20
D 22 19
E : 21 18
D C

1110
15
12| 9
13
14

You might worry how this affects the relationship between say,

A and B. We’'ll discuss that in a moment.
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Algorithm Example

The next edge requires that B - D.
A

A: 27125 17 11|10

E B B: 7124 16 15| 7
— C: 2623 20 12

D: 7122 19 13| 7
E: 21 18 14
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Algorithm Example

B - D means we place the larger of {28,29} on B. This time, B
already had 5 victories over D, so we place the smaller of {7,8}

on B.
A

A: 27125

E B B: 29|24
— C: 26|23

D: 28|22

E: 21

D¥ ©

Now, look back to A and B.

17
16
20
19
18

1110
15| 7
12] 9
13| 8
14
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Algorithm Example

The next edge we choose is B >~ E.

A
A: 27 |25 17
E B B: 7 29|24 16
— C: 26 |23 20
D: 28122 19
E: 7121 18
D€ @

11
15
12
13
14

—_
o

'~ 00 O
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Algorithm Example

B - E means we place the larger of {30,31} on B. B originally
had 5 victories over E, so we place the smaller of {5,6} on B.

A
A: 27125 17 11|10
E B B: 31 29|24 16 15| 7 5
— C: 2623 20 12| 9
D: 28122 19 13| 8
E: 3021 18 14| 6
D€ c
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Algorithm Example

The next edge we add is C >~ E.

A
A: 27125 17 11|10
E B B: 31 29|24 16 15| 7 5
— C: 7 26|23 20 12| 9 7
D: 28122 19 13| 8
E: 7 30|21 18 14| 6 7
D€ @
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Algorithm Example

C > E means we place the larger of {32,33} to C. C had 5
victories over E, so give it the smaller of {3,4}.

A
A: 27125 17 11|10
E B B: 31 29|24 16 15| 7 5
— C: 33 26|23 20 12| 9 3
D: 28122 19 13| 8
E: 32 30|21 18 14| 6 4
D€ t
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Algorithm Example

Lastly, we add A > D.

A

A 7 27|25 17 11|10 7?

E B B: 31 29|24 16 15| 7 5
— C: 33 26|23 20 12| 9 3

D: 7 28|22 19 13| 8 7

E: 32 30|21 18 14| 6 4
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Algorithm Example

A > D means A gets the larger of {34,35}. A had 4 victories
over D, so it gets the larger of {1,2}.

A
A: 35 27|25 17 1110 2
E B B: 31 29|24 16 15| 7 5
— C: 33 26|23 20 12| 9 3
D: 34 28|22 19 13| 8 1
E: 32 30|21 18 14| 6 4
D c
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Algorithm Example

We have constructed a set of balanced dice such that the
probabilities correspond exactly with the direction of the edges.

A
A: 3 27 25 17 11 10 2
E B B: 31 29 24 16 15 7 5
— C: 33 26 23 20 12 9 3
D: 34 28 22 19 13 8 1
E: 32 30 21 18 14 6 4
D c
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Non-Strong Tournaments

@ If a tournament is not strong, it is acyclic on its strong
components.
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Non-Strong Tournaments

@ If a tournament is not strong, it is acyclic on its strong
components.
@ Then, do the following:
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Non-Strong Tournaments

@ If a tournament is not strong, it is acyclic on its strong
components.
@ Then, do the following:
@ Take the subgraphs consisting of each strong component.
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Non-Strong Tournaments

@ If a tournament is not strong, it is acyclic on its strong
components.
@ Then, do the following:

@ Take the subgraphs consisting of each strong component.
@ Perform the above algorithm on them.
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Non-Strong Tournaments

@ If a tournament is not strong, it is acyclic on its strong
components.
@ Then, do the following:

@ Take the subgraphs consisting of each strong component.
© Perform the above algorithm on them.
@ Concatenate in acyclic (total) order.
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Balance In Tournaments

@ The algorithm maintains balance!
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Balance In Tournaments

@ The algorithm maintains balance!

@ So, if the tournament is strong, it can be realized with
balanced dice.
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Balance In Tournaments

@ The algorithm maintains balance!

@ So, if the tournament is strong, it can be realized with
balanced dice.

@ If the tournament is not strong, balance is impossible.

Alex Schaefer Non-Transitive Dice and Directed Graphs



Non-Transitive Dice and Directed Graphs

|—Tournaments

Incomplete Directed Graphs

@ An arbitrary directed graph isn’'t a problem.
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Incomplete Directed Graphs

@ An arbitrary directed graph isn’'t a problem.

@ Consider it as a subgraph of a tournament on the same
vertex set.
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The End Result

Theorem (S. 2012):

Let G be a directed graph. Then there is a set of dice which
realizes G. Further, the dice are balanced if and only if Gis a
subgraph of a strong tournament on the same vertex set.
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Thank You!
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