Non-Transitive Dice and Directed Graphs

Alex Schaefer

Department of Mathematics
Binghamton University
August 3, 2015

Outline

(2) Existence
(3) Directed Graphs

4 Tournaments

Outline

Directed Graphs

Tournaments

Introduction

- The original phenomenon that was explored is that of non-transitive dice, an idea first introduced by Martin Gardner.

Introduction

- The original phenomenon that was explored is that of non-transitive dice, an idea first introduced by Martin Gardner.
- The concept is (perhaps) best explained in terms of a game.

Introduction

- The original phenomenon that was explored is that of non-transitive dice, an idea first introduced by Martin Gardner.
- The concept is (perhaps) best explained in terms of a game.
- I will take this concept and extrapolate it to a different setting (directed graphs).

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of n-sided dice, using the numbers of [3n] each exactly once.

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of n-sided dice, using the numbers of [3n] each exactly once.
- $D=$| $A:$ | 18 | 9 | 8 | 7 | 6 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B:$ | 17 | 16 | 15 | 4 | 3 | 2. |
| $C:$ | 14 | 13 | 12 | 11 | 10 | 1 | .

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of n-sided dice, using the numbers of [3n] each exactly once.
- $D=\begin{array}{ccccccc}A: & 18 & 9 & 8 & 7 & 6 & 5 \\ B: & 17 & 16 & 15 & 4 & 3 & 2 \\ C: & 14 & 13 & 12 & 11 & 10 & 1\end{array}$.
- Let $P(A \succ B)$ be: the probability that die A rolls a higher number than die B.

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of n-sided dice, using the numbers of [3n] each exactly once.
- $D=\begin{array}{ccccccc}A: & 18 & 9 & 8 & 7 & 6 & 5 \\ B: & 17 & 16 & 15 & 4 & 3 & 2 \\ C: & 14 & 13 & 12 & 11 & 10 & 1\end{array}$.
- Let $P(A \succ B)$ be: the probability that die A rolls a higher number than die B.
- Note that:
- $P(A \succ B)+P(B \succ A)=1$.

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of n-sided dice, using the numbers of [3n] each exactly once.
- $D=\begin{array}{ccccccc}A: & 18 & 9 & 8 & 7 & 6 & 5 \\ B: & 17 & 16 & 15 & 4 & 3 & 2 \\ C: & 14 & 13 & 12 & 11 & 10 & 1\end{array}$.
- Let $P(A \succ B)$ be: the probability that die A rolls a higher number than die B.
- Note that:
- $P(A \succ B)+P(B \succ A)=1$.
- The outcomes of our game can then be given by $P(A \succ B)$, $P(B \succ C)$, and $P(C \succ A)$.

Non-Transitive Dice and Probabilities

- A set of dice D is a triple of n-sided dice, using the numbers of [3n] each exactly once.
- $D=\begin{array}{ccccccc}A: & 18 & 9 & 8 & 7 & 6 & 5 \\ B: & 17 & 16 & 15 & 4 & 3 & 2 \\ C: & 14 & 13 & 12 & 11 & 10 & 1\end{array}$.
- Let $P(A \succ B)$ be: the probability that die A rolls a higher number than die B.
- Note that:
- $P(A \succ B)+P(B \succ A)=1$.
- The outcomes of our game can then be given by $P(A \succ B)$,

$$
P(B \succ C) \text {, and } P(C \succ A) \text {. }
$$

- In the above example, $P(A \succ B)=\frac{21}{36}, P(B \succ C)=\frac{21}{36}$, and $P(C \succ A)=\frac{25}{36}$.

Balance

- Issues with this example:

Balance

- Issues with this example:
- $P(A \succ B)+P(A \succ C), P(B \succ C)+P(B \succ A)$, and $P(C \succ A)+P(C \succ B)$.

Balance

- Issues with this example:
- $P(A \succ B)+P(A \succ C), P(B \succ C)+P(B \succ A)$, and $P(C \succ A)+P(C \succ B)$.
- It'd be nice if those were equal, which is equivalent to:

Balance

- Issues with this example:
- $P(A \succ B)+P(A \succ C), P(B \succ C)+P(B \succ A)$, and $P(C \succ A)+P(C \succ B)$.
- It'd be nice if those were equal, which is equivalent to:
- $P(A \succ B)=P(B \succ C)=P(C \succ A)$, which we will call the "victorious probability".

Balance

- Issues with this example:
- $P(A \succ B)+P(A \succ C), P(B \succ C)+P(B \succ A)$, and $P(C \succ A)+P(C \succ B)$.
- It'd be nice if those were equal, which is equivalent to:
- $P(A \succ B)=P(B \succ C)=P(C \succ A)$, which we will call the "victorious probability".
- This condition will be called balance.

Balance

- Issues with this example:
- $P(A \succ B)+P(A \succ C), P(B \succ C)+P(B \succ A)$, and $P(C \succ A)+P(C \succ B)$.
- It'd be nice if those were equal, which is equivalent to:
- $P(A \succ B)=P(B \succ C)=P(C \succ A)$, which we will call the "victorious probability".
- This condition will be called balance.

A: $\begin{array}{llllll}18 & 14 & 11 & 7 & 4 & 3\end{array}$

- B: $17 \quad 13 \quad 10 \quad 9 \quad 6 \quad 2$ has victorious probability $\frac{19}{36}$. C: $\begin{array}{lllllll}16 & 15 & 12 & 8 & 5 & 1\end{array}$

BntD's

- BntD(1)/BntD(2)... no.

BntD's

- BntD(1)/BntD(2)... no.
- BntD(3)'s:

BntD's

- BntD(1)/BntD(2) ... no.
- BntD(3)'s:

$A:$	9	5	1
-	$B:$	8	3
C	7	6	2
A	9	4	2
-	$B:$	8	1
C	7	5	3

BntD's

- BntD(1)/BntD(2) ... no.
- BntD(3)'s:

A: $9 \quad 5 \quad 1$

- B: 843

C: 762
A: 942

- $B: 861$.

C: 753

- Both with victorious probability $\frac{5}{9}$.

BntD's

- BntD(1)/BntD(2) ... no.
- BntD(3)'s:

$A:$	9	5	1
-	$B:$	8	4
3			
C	7	6	2
A	9	4	2
	$B:$	8	6
1			

- Both with victorious probability $\frac{5}{9}$.
- $\left.\operatorname{A~BntD}(4): \begin{array}{ccccc}A: & 12 & 10 & 3 & 1 \\ B & 9 & 8 & 7 & 2 \\ & C: & 11 & 6 & 5\end{array}\right)$, v.p. $\frac{9}{16}$.

BntD's

- BntD(1)/BntD(2) ...no.
- BntD(3)'s:
A: $9 \quad 5 \quad 1$
- B: 843 ,

C: 762
A: 942

- B: 861 .

C: 753

- Both with victorious probability $\frac{5}{9}$.
- $\operatorname{A~BntD(4):~} B: \begin{array}{cccc}9 & 8 & 7 & 2 \text {, v.p. } \frac{9}{16} \text {. }\end{array}$

C: $\begin{array}{llll}11 & 6 & 5 & 4\end{array}$
A: $\begin{array}{llllll}15 & 11 & 7 & 4 & 3\end{array}$

C: $\begin{array}{llllll}13 & 12 & 8 & 6 & 1\end{array}$

Outline

Directed Graphs

Tournaments

Concatenation Lemmas

- Concatenation of two sets of dice:

$$
D_{\sigma}=\left\{\begin{array}{llll}
A: & 9 & 5 & 1 \\
B: & 8 & 4 & 3 \\
C: & 7 & 6 & 2
\end{array}, \quad D_{\rho}=\left\{\begin{array}{llll}
A: & 9 & 4 & 2 \\
B: & 8 & 6 & 1 \\
C: & 7 & 5 & 3
\end{array} .\right.\right.
$$

Concatenation Lemmas

- Concatenation of two sets of dice:
$D_{\sigma}=\left\{\begin{array}{llll}A: & 9 & 5 & 1 \\ B: & 8 & 4 & 3 \\ C: & 7 & 6 & 2\end{array}, \quad D_{\rho}=\left\{\begin{array}{llll}A: & 9 & 4 & 2 \\ B: & 8 & 6 & 1 \\ C: & 7 & 5 & 3\end{array}\right.\right.$.
- $D_{\rho \sigma}=\left\{\begin{array}{llll|lll}A: & 18 & 14 & 10 & 9 & 4 & 2 \\ B: & 17 & 13 & 12 & 8 & 6 & 1 \\ C: & 16 & 15 & 11 & 7 & 5 & 3\end{array}\right.$.

Concatenation Lemmas

- Concatenation of two sets of dice:

$$
D_{\sigma}=\left\{\begin{array}{llll}
A: & 9 & 5 & 1 \\
B: & 8 & 4 & 3 \\
C: & 7 & 6 & 2
\end{array}, \quad D_{\rho}=\left\{\begin{array}{llll}
A: & 9 & 4 & 2 \\
B: & 8 & 6 & 1 \\
C: & 7 & 5 & 3
\end{array}\right.\right.
$$

$$
-D_{\rho \sigma}=\left\{\begin{array}{llll|lll}
A: & 18 & 14 & 10 & 9 & 4 & 2 \\
B: & 17 & 13 & 12 & 8 & 6 & 1 \\
C: & 16 & 15 & 11 & 7 & 5 & 3
\end{array} .\right.
$$

Lemmas (S. 2011)

Concatenation preserves both balance and non-transitivity.

Existence Theorem

Theorem (S. 2011)

There exists a $\operatorname{BntD}(n)$ for every $n \geq 3$.

Existence Theorem

Theorem (S. 2011)

There exists a $\operatorname{BntD}(n)$ for every $n \geq 3$.

- We have given $\operatorname{BntD}(n)$'s for $n=3,4,5$.

Existence Theorem

Theorem (S. 2011)

There exists a $\operatorname{BntD}(n)$ for every $n \geq 3$.

- We have given $\operatorname{BntD}(n)$'s for $n=3,4,5$.
- By lemmas, concatenation of two BntD's is a BntD.

Existence Theorem

Theorem (S. 2011)

There exists a $\operatorname{BntD}(n)$ for every $n \geq 3$.

0

Outline

3 Directed Graphs

Tournaments

Cycles

- Our $\operatorname{BntD}(n)$'s could be viewed as directed 3-cycles.

Cycles

- Our BntD (n) 's could be viewed as directed 3-cycles.
- The statement then says we can build a set of dice that realizes the edges of this directed graph.

Cycles

- Our BntD (n) 's could be viewed as directed 3-cycles.
- The statement then says we can build a set of dice that realizes the edges of this directed graph.
- Next natural question: more vertices (more dice)?

More Dice?

- Efron's Dice: $\begin{array}{ccccccc}A: & 4 & 4 & 4 & 4 & 0 & 0 \\ B: & 3 & 3 & 3 & 3 & 3 & 3 \\ C: & 6 & 6 & 2 & 2 & 2 & 2 \\ D: & 5 & 5 & 5 & 1 & 1 & 1\end{array}$.

More Dice?

- Efron's Dice: $\begin{array}{ccccccccc}A: & 4 & 4 & 4 & 4 & 0 & 0 & \\ B: & 3 & 3 & 3 & 3 & 3 & 3 \\ C & 6 & 6 & 2 & 2 & 2 & 2 & \\ D: & 5 & 5 & 5 & 1 & 1 & 1 & \\ \\ & A: & 19 & 18 & 17 & 16 & 2 & 1 \\ B & 15 & 14 & 13 & 12 & 11 & 10 \\ C & 24 & 23 & 9 & 8 & 7 & 6 \\ & : & 22 & 21 & 20 & 5 & 4 & 3\end{array}$

More Dice?

- Efron's Dice: $\begin{array}{lllllll}A: & 4 & 4 & 4 & 4 & 0 & 0 \\ B: & 3 & 3 & 3 & 3 & 3 & 3 \\ C: & 6 & 6 & 2 & 2 & 2 & 2 \\ D: & 5 & 5 & 5 & 1 & 1 & 1\end{array}$.

A:	19	18	17	16	2	1

- Expand to: $\begin{array}{cccccccc}B & 15 & 14 & 13 & 12 & 11 & 10 \\ C & 24 & 23 & 9 & 8 & 7 & 6 \\ & D: & 22 & 21 & 20 & 5 & 4 & 3\end{array}$
- Suitably modify definitions to: $\operatorname{BntD}_{m}(n)$.

More more dice?

- $\operatorname{BntD}_{4}(3):$| $A:$ | 12 | 5 | 2 |
| :---: | :---: | :---: | :---: |
| $B:$ | 11 | 8 | 1 |
| $C:$ | 10 | 7 | 3 |
| $D:$ | 9 | 6 | 4 | ,

More more dice?

$A: 1252$

- $\mathrm{BntD}_{4}(3): \begin{array}{llll}B: & 11 & 8 & 1 \\ C: & 10 & 7 & 3\end{array}$,
$D: \quad 964$
$\begin{array}{llll}A: & 16 & 10 \quad 7\end{array}$
- $\operatorname{BntD}_{4}(4): \begin{array}{lcccc}B & 15 & 9 & 6 & 4 \\ C: & 14 & 12 & 5 & 3\end{array}$,

D: $\begin{array}{lllll}13 & 11 & 8 & 2\end{array}$

More more dice?

$A: 1252$

- $\mathrm{BntD}_{4}(3): \begin{array}{llll}B: & 11 & 8 & 1 \\ C: & 10 & 7 & 3\end{array}$,
$D: 964$
- $\operatorname{BntD}_{4}(4): \begin{array}{ccccc}A: & 16 & 10 & 7 & 1 \\ B: & 15 & 9 & 6 & 4 \\ C: & 14 & 12 & 5 & 3\end{array}$,

D: $\begin{array}{lllll}13 & 11 & 8 & 2\end{array}$
A: $\begin{array}{llllll}20 & 13 & 10 & 6 & 4\end{array}$

- $\operatorname{BntD}_{4}(5): \begin{array}{cccccc}B & 19 & 15 & 9 & 8 & 3 \\ C & 18 & 16 & 12 & 5 & 1\end{array}$.

D: $\begin{array}{llllll}17 & 14 & 11 & 7 & 2\end{array}$

More more dice?

- Concatenation arguments...

The Cycle Question

- As it turns out, any directed m-cycle is realizable with n balanced dice (both ≥ 3), giving the following:

The Cycle Question

- As it turns out, any directed m-cycle is realizable with n balanced dice (both ≥ 3), giving the following:

Theorem (S. 2011)

Let $m, n \geq 3$. Then there exits a $B n t D_{m}(n)$.
-

The Cycle Question

- As it turns out, any directed m-cycle is realizable with n balanced dice (both ≥ 3), giving the following:

Theorem (S. 2011)

Let $m, n \geq 3$. Then there exits a $B n t D_{m}(n)$.

- Proof: By induction.

Induction Example

$$
\begin{array}{rllllllll}
& A: & 9 & 5 & 1 \\
- & B: & 8 & 4 & 3
\end{array} \mapsto \begin{array}{llll}
A: & \hat{9} & \hat{5} & \hat{1} \\
B: & \hat{8} & \hat{4} & \hat{3} \\
C & C: & 7 & 6 \\
\hline
\end{array}
$$

Induction Example

$\begin{array}{lllllllll} & A: & 9 & 5 & 1 \\ & B: & 8 & 4 & 3 & \rightarrow & \hat{9} & \hat{5} & \hat{1} \\ B: & \hat{8} & \hat{4} & \hat{3} \\ C: & 7 & 6 & 2 & & \\ C: & 7 & \hat{6} & \hat{2} \\ & D: & ? & ? & ?\end{array}$

- The dice related to D are A and C, requiring that $C \succ D$, $D \succ A$. But as $C \succ A$ already, this is a total ordering: $C>D>A$.

Induction Example

$\begin{array}{lllllllll}A: & 9 & 5 & 1\end{array} \xrightarrow{A:} \hat{9}$ 5 $\quad \hat{1}$

- The dice related to D are A and C, requiring that $C \succ D$, $D \succ A$. But as $C \succ A$ already, this is a total ordering: $C>D>A$.
- So, because $C \succ A$, we step outside \mathbb{N} to make D numerically "similar" to C, but "inferior" to it:

$A:$	9	5	1
$C:$	7	6	2
$D:$	6.9	5.9	2.1

Induction Example

$\begin{array}{lllllllll}A: & 9 & 5 & 1\end{array} \xrightarrow{A:} \hat{9}$ 5 $\quad \hat{1}$

- The dice related to D are A and C, requiring that $C \succ D$, $D \succ A$. But as $C \succ A$ already, this is a total ordering: $C>D>A$.
- So, because $C \succ A$, we step outside \mathbb{N} to make D numerically "similar" to C, but "inferior" to it:

$A:$	9	5	1
$C:$	7	6	2
$D:$	6.9	5.9	2.1

- Insert our new die into the mix: $\begin{array}{ccccc}A: & 9 & 5 & 1 \\ B: & 8 & 4 & 3 \\ C: & 7 & 6 & 2 \\ & D: & 6.9 & 5.9 & 2.1\end{array}$
- Insert our new die into the mix: $\begin{array}{ccccc}A: & 9 & 5 & 1 \\ B: & 8 & 4 & 3 \\ C: & 7 & 6 & 2 \\ & D: & 6.9 & 5.9 & 2.1\end{array}$
- Finally, re-label linearly:

$A:$	9	5	1		$A:$	12	6	1
$B:$	8	4	3					
$C:$	7	6	2					
$B:$	11	5	4					
$D:$	6.9	5.9	2.1		$D:$	10	8	2
C		7	3					

A General Question

- Tournament: a copy of the complete graph on m vertices K_{m}, where each edge is given an orientation from one incident vertex to the other.

A General Question

- Tournament: a copy of the complete graph on m vertices K_{m}, where each edge is given an orientation from one incident vertex to the other.
- Given an arbitrary tournament, does it have a realization as dice? Balanced dice??

A General Question

- Tournament: a copy of the complete graph on m vertices K_{m}, where each edge is given an orientation from one incident vertex to the other.
- Given an arbitrary tournament, does it have a realization as dice? Balanced dice??
- Because acyclic graphs correspond to total (well) orderings, they are trivially realizable, even by one-sided dice. However, the condition of balance (all victorious probabilities equal) has no meaning here.

A Few Cases Answered

- Any tournament T_{3} is either acyclic, which is realizable, or it is a directed 3-cycle (a $\operatorname{BntD}(n)$).

A Few Cases Answered

- $A T_{4}$:

A Few Cases Answered

- A T_{4} :
- Up to isomorphism, there are 4 of them.

A Few Cases Answered

- A T_{4} :
- Up to isomorphism, there are 4 of them.
- One is acyclic \checkmark

A Few Cases Answered

- A T_{4} :
- Up to isomorphism, there are 4 of them.
- One is acyclic \checkmark
- One is a 3-cycle, plus a "powerhouse" \checkmark

A Few Cases Answered

- A T_{4} :
- Up to isomorphism, there are 4 of them.
- One is acyclic \checkmark
- One is a 3-cycle, plus a "powerhouse" \checkmark
- One is a 3-cycle, plus a "loser" \checkmark

A Few Cases Answered

- A T_{4} :
- Up to isomorphism, there are 4 of them.
- One is acyclic \checkmark
- One is a 3-cycle, plus a "powerhouse" \checkmark
- One is a 3-cycle, plus a "loser" \checkmark
- Only one has a 4-cycle, so that is a $B n D_{4}(n) \checkmark$

A Few Cases Answered

- The real issue...

Outline

Introduction

Directed Graphs

4 Tournaments

The Ignored Structure

- With 4 dice,

$A:$	12	6	1
$B:$	11	5	4
$C:$	10	8	2
$D:$	9	7	3

The Ignored Structure

- With 4 dice,

A: $12 \quad 6 \quad 1$
$B: 1154$
C: 1082
D: 973

- $A \succ B \succ C \succ D \succ A$.

The Ignored Structure

- With 4 dice,

A: $12 \quad 6 \quad 1$
$B: 1154$
C: 1082
D: 973

- $A \succ B \succ C \succ D \succ A$.
- How do A, C relate? B, D ?

The Ignored Structure

- With 4 dice,
- | $A:$ | 12 | 6 | 1 |
| :---: | :---: | :---: | :---: |
| $B:$ | 11 | 5 | 4 |
| $C:$ | 10 | 8 | 2 |
| $D:$ | 9 | 7 | 3 |
- $A \succ B \succ C \succ D \succ A$.
- How do A, C relate? B, D ?
- Is it forced or can it be manipulated?

The New Question

- Can an arbitrary orientation of K_{n} be constructed with a set of dice?

The New Question

- Can an arbitrary orientation of K_{n} be constructed with a set of dice?
- If so, we will call the given tournament realizable.

Connectedness

- Given a directed graph on n vertices, a connected component is a subset of the vertices for which any two contain a directed path between them (in both directions).

Connectedness

- Given a directed graph on n vertices, a connected component is a subset of the vertices for which any two contain a directed path between them (in both directions).
- Alternately: a connected component is a set of vertices which form a maximal directed cycle.

Connectedness

- Given a directed graph on n vertices, a connected component is a subset of the vertices for which any two contain a directed path between them (in both directions).
- Alternately: a connected component is a set of vertices which form a maximal directed cycle.
- Belonging to a connected component is an equivalence relation.

Connectedness

- Given a directed graph on n vertices, a connected component is a subset of the vertices for which any two contain a directed path between them (in both directions).
- Alternately: a connected component is a set of vertices which form a maximal directed cycle.
- Belonging to a connected component is an equivalence relation.
- Viewing a component as one new vertex, and keeping all edges not contained in a component gives an acyclic directed graph.

Example

Example

Example

Example

Example

Strong Tournaments

- A tournament is said to be strong if it has exactly 1 connected component.

Strong Tournaments

- A tournament is said to be strong if it has exactly 1 connected component.
- Alternately: a tournament is strong if and only if it contains a directed Hamilton cycle.

Strong Tournaments

- A tournament is said to be strong if it has exactly 1 connected component.
- Alternately: a tournament is strong if and only if it contains a directed Hamilton cycle.
- Note: a strong tournament then has a subgraph (obtained only by deleting edges) which is a directed cycle and thus can be realized with a set of balanced dice.

Strong Tournaments

- A tournament is said to be strong if it has exactly 1 connected component.
- Alternately: a tournament is strong if and only if it contains a directed Hamilton cycle.
- Note: a strong tournament then has a subgraph (obtained only by deleting edges) which is a directed cycle and thus can be realized with a set of balanced dice.
- We now recover the deleted edges.

How This Is Going To Work

- We will begin with a directed cycle, and construct a "traditional" set of dice.

How This Is Going To Work

- We will begin with a directed cycle, and construct a "traditional" set of dice.
- Then, we will check the number of victories for the pair of dice we wish to add as an edge in our tournament.

How This Is Going To Work

- We will begin with a directed cycle, and construct a "traditional" set of dice.
- Then, we will check the number of victories for the pair of dice we wish to add as an edge in our tournament.
- Then, we will add sides to those dice to alter the number of victories (or to ensure all dice end up with the same number of sides).

Algorithm Example

We start with a set of 5 dice. Note that every die has either 4 or 5 victories over any other.

$A:$	15	7	1
$B:$	14	6	5
$C:$	13	10	2
$D:$	12	9	3
$E:$	11	8	4

Algorithm Example

Using a little foresight, we shift our labels up by 10.

$A:$	25	17	11
$B:$	24	16	15
\rightarrow	$C:$	23	20
12			
$D:$	22	19	13
$E:$	21	18	14

Algorithm Example

The first edge we choose to add requires $A \succ C$.

\rightarrow| $A:$ | $?$ | 25 | 17 | 11 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $B:$ | | 24 | 16 | 15 | |
| $C:$ | $?$ | 23 | 20 | 12 | $?$ |
| $D:$ | | 22 | 19 | 13 | |
| $E:$ | | 21 | 18 | 14 | |

Algorithm Example

$A \succ C$ means we place the larger of $\{26,27\}$ on A. A only had 4 victories over C, so we place the larger of $\{9,10\}$ on A to add one more.

$A:$	27	25	17	11	10
$B:$		24	16	15	
C	26	23	20	12	9
$D:$		22	19	13	
$E:$		21	18	14	

You might worry how this affects the relationship between say, A and B. We'll discuss that in a moment.

Algorithm Example

The next edge requires that $B \succ D$.

$A:$	27	25	17	11	10
$B:$	$?$	24	16	15	$?$
$C:$	26	23	20	12	9
$D:$	$?$	22	19	13	$?$
$E:$		21	18	14	

Algorithm Example

$B \succ D$ means we place the larger of $\{28,29\}$ on B. This time, B already had 5 victories over D, so we place the smaller of $\{7,8\}$ on B.

$A:$	27	25	17	11	10
$B:$	29	24	16	15	7
$C:$	26	23	20	12	9
$D:$	28	22	19	13	8
$E:$		21	18	14	

Now, look back to A and B.

Algorithm Example

The next edge we choose is $B \succ E$.

$A:$		27	25	17	11	10	
$B:$	$?$	29	24	16	15	7	$?$
$C:$		26	23	20	12	9	
$D:$		28	22	19	13	8	
$E:$		$?$	21	18	14	$?$	

Algorithm Example

$B \succ E$ means we place the larger of $\{30,31\}$ on B. B originally had 5 victories over E, so we place the smaller of $\{5,6\}$ on B.

$A:$		27	25	17	11	10	
	$B:$	31	29	24	16	15	7
	5						
$D:$		26	23	20	12	9	
$E:$		28	22	19	13	8	
	30	21	18	14	6		

Algorithm Example

The next edge we add is $C \succ E$.

$A:$		27	25	17	11	10		
$B:$	31	29	24	16	15	7	5	
C	C	$?$	26	23	20	12	9	$?$
$D:$		28	22	19	13	8		
$E:$	$?$	30	21	18	14	6	$?$	

Algorithm Example

$C \succ E$ means we place the larger of $\{32,33\}$ to C. C had 5 victories over E, so give it the smaller of $\{3,4\}$.

	$A:$		27	25	17	11	10	
	$B:$	31	29	24	16	15	7	5
$C:$	33	26	23	20	12	9	3	
$D:$		28	22	19	13	8		
$E:$	32	30	21	18	14	6	4	

Algorithm Example

Lastly, we add $A \succ D$.

Algorithm Example

$A \succ D$ means A gets the larger of $\{34,35\}$. A had 4 victories over D, so it gets the larger of $\{1,2\}$.

| $A:$ | 35 | 27 | 25 | 17 | 11 | 10 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B:$ | 31 | 29 | 24 | 16 | 15 | 7 | 5 |
| $C:$ | 33 | 26 | 23 | 20 | 12 | 9 | 3 |
| $D:$ | 34 | 28 | 22 | 19 | 13 | 8 | 1 |
| $E:$ | 32 | 30 | 21 | 18 | 14 | 6 | 4 |

Algorithm Example

We have constructed a set of balanced dice such that the probabilities correspond exactly with the direction of the edges.

\rightarrow| $A:$ | 35 | 27 | 25 | 17 | 11 | 10 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B:$ | 31 | 29 | 24 | 16 | 15 | 7 | 5 |
| $C:$ | 33 | 26 | 23 | 20 | 12 | 9 | 3 |
| $D:$ | 34 | 28 | 22 | 19 | 13 | 8 | 1 |
| $E:$ | 32 | 30 | 21 | 18 | 14 | 6 | 4 |

Non-Strong Tournaments

- If a tournament is not strong, it is acyclic on its strong components.

Non-Strong Tournaments

- If a tournament is not strong, it is acyclic on its strong components.
- Then, do the following:

Non-Strong Tournaments

- If a tournament is not strong, it is acyclic on its strong components.
- Then, do the following:
(1) Take the subgraphs consisting of each strong component.

Non-Strong Tournaments

- If a tournament is not strong, it is acyclic on its strong components.
- Then, do the following:
(1) Take the subgraphs consisting of each strong component.
(2) Perform the above algorithm on them.

Non-Strong Tournaments

- If a tournament is not strong, it is acyclic on its strong components.
- Then, do the following:
(1) Take the subgraphs consisting of each strong component.
(2) Perform the above algorithm on them.
(3) Concatenate in acyclic (total) order.

Balance In Tournaments

- The algorithm maintains balance!

Balance In Tournaments

- The algorithm maintains balance!
- So, if the tournament is strong, it can be realized with balanced dice.

Balance In Tournaments

- The algorithm maintains balance!
- So, if the tournament is strong, it can be realized with balanced dice.
- If the tournament is not strong, balance is impossible.

Incomplete Directed Graphs

- An arbitrary directed graph isn't a problem.

Incomplete Directed Graphs

- An arbitrary directed graph isn't a problem.
- Consider it as a subgraph of a tournament on the same vertex set.

The End Result

Theorem (S. 2012):

Let G be a directed graph. Then there is a set of dice which realizes G. Further, the dice are balanced if and only if G is a subgraph of a strong tournament on the same vertex set.

Thank You!

