Classifying 2-Transitive Perfect Matchings

Alex Schaefer

Department of Mathematics Binghamton University

April 9, 2017

Alex Schaefer Classifying 2-Transitive Perfect Matchings

イロト イポト イヨト イヨト

э

Alex Schaefer Classifying 2-Transitive Perfect Matchings

< 🗇 🕨

→ E > < E >

э

Classifying 2-Transitive Perfect Matchings

Introduction

Outline

Alex Schaefer Classifying 2-Transitive Perfect Matchings

・ロ と く 理 と く 国 と ・

• A signed graph is a triple $\Sigma = (V, E, \sigma)$.

Alex Schaefer Classifying 2-Transitive Perfect Matchings

- A signed graph is a triple $\Sigma = (V, E, \sigma)$.
- (V, E) is called the *underlying* or *unsigned* graph of Σ .

イロト イポト イヨト イヨト 二日

- A signed graph is a triple $\Sigma = (V, E, \sigma)$.
- (V, E) is called the *underlying* or *unsigned* graph of Σ .
- $\sigma : E \mapsto \{+, -\}$ is a function.

Some Signed Graphs

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Alex Schaefer Classifying 2-Transitive Perfect Matchings

• The sign of a subgraph is the product of the signs of its edges.

★ Ξ ► ★ Ξ ►

3

< 🗇 ▶

- The sign of a subgraph is the product of the signs of its edges.
- A positive cycle is called *balanced*.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

- The sign of a subgraph is the product of the signs of its edges.
- A positive cycle is called *balanced*.
- A graph in which every cycle is balanced is a balanced signed graph.

< 🗇 🕨

→ Ξ → < Ξ →</p>

Classifying 2-Transitive Perfect Matchings

- Introduction

Balance

Alex Schaefer Classifying 2-Transitive Perfect Matchings

・ロト・(中下・(中下・(日下・))の(の)

Classifying 2-Transitive Perfect Matchings

-Introduction

Balance

Alex Schaefer Classifying 2-Transitive Perfect Matchings

Balanced Triangles

э

э

Alex Schaefer Classifying 2-Transitive Perfect Matchings

• Choose a (possibly empty) edge cut, and negate every edge in it.

★ E ► ★ E ►

< - 10 >

- Choose a (possibly empty) edge cut, and negate every edge in it.
- This changes the sign of no cycle.

(4) E > (4) E > (1)

< 🗇 🕨

э

- Choose a (possibly empty) edge cut, and negate every edge in it.
- This changes the sign of no cycle.
- We can then partition the set of signings of an underlying graph into *switching* (isomorphism) *classes*.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Negative Cycle Vector

• For each switching class, make a vector where each entry is the number of negative cycles of length *k*.

・ 戸 ト ・ 三 ト ・ 三 ト

The Negative Cycle Vector

- For each switching class, make a vector where each entry is the number of negative cycles of length *k*.
- Question: does this vector uniquely identify a switching class of K_n?

・回り ・ヨト ・ヨト

Sorry, But No

Classifying 2-Transitive Perfect Matchings

- Cycle Vector Space

Outline

Alex Schaefer Classifying 2-Transitive Perfect Matchings

・ 戸 ト ・ 三 ト ・ 三 ト

э

A Conjecture

• Make a large matrix where every row is the negative cycle vector of some switching class.

→ Ξ → < Ξ →</p>

< 🗇 🕨

э

A Conjecture

- Make a large matrix where every row is the negative cycle vector of some switching class.
- This matrix has (cycle spectrum) columns and (in general) TONS of rows.

< 🗇 🕨

A Conjecture

- Make a large matrix where every row is the negative cycle vector of some switching class.
- This matrix has (cycle spectrum) columns and (in general) TONS of rows.

Conjecture

This matrix has full column rank for any underlying graph.

۲

→ Ξ → < Ξ →</p>

A Conjecture

- Make a large matrix where every row is the negative cycle vector of some switching class.
- This matrix has (cycle spectrum) columns and (in general) TONS of rows.

Conjecture

This matrix has full column rank for any underlying graph.

۲

Theorem (S. 2015)

This matrix has full column rank for K_n and $K_{m,n}$.

イロト イポト イヨト イヨト

 Choose a collection corresponding to a certain kind of signing, show it spans.

ヘロア 人間 アメヨア 人口 ア

- Choose a collection corresponding to a certain kind of signing, show it spans.
- The collection that appears to work for almost everything:

(4回) (日) (日)

ъ

The Method

- Choose a collection corresponding to a certain kind of signing, show it spans.
- The collection that appears to work for almost everything:
- A maximum negative matching and it's submatchings

< 回 ト く ヨ ト く ヨ ト

The Method

- Choose a collection corresponding to a certain kind of signing, show it spans.
- The collection that appears to work for almost everything:
- A maximum negative matching and it's submatchings
- However...

< 回 ト く ヨ ト く ヨ ト

Classifying 2-Transitive Perfect Matchings

- Permutability

Outline

Introduction

Alex Schaefer Classifying 2-Transitive Perfect Matchings

・ロ と く 理 と く 国 と ・

Definition

 Let *M* be a matching in a graph Γ with *m* edges, and *G* ≤ Aut(Γ). Say *M* is *G*-permutable if *G*^{E(M)} ≅ *S_m*.

* 聞 > * ヨ > * ヨ > -

Definition

- Let *M* be a matching in a graph Γ with *m* edges, and *G* ≤ Aut(Γ). Say *M* is *G*-permutable if *G*^{E(M)} ≃ *S_m*.
- If such an *M* exists, say Γ contains an *m*-permutable matching.

< 回 ト く ヨ ト く ヨ ト

Definition

- Let \mathcal{M} be a matching in a graph Γ with m edges, and $G \leq \operatorname{Aut}(\Gamma)$. Say \mathcal{M} is *G*-permutable if $G^{E(\mathcal{M})} \cong S_m$.
- If such an *M* exists, say Γ contains an *m*-permutable matching.
- The computations done previously only work on permutable matchings!

・回り ・ヨト ・ヨト

Some Results

Proposition (S., Swartz (2016)

Let Γ be a *G*-arc-transitive graph with a *G*-permutable *m*-matching, where $m \ge 6$. If $\{\alpha, \beta\}$ is an edge of Γ , then there is a subgroup $U \le G_{\alpha\beta}$ such that $U^{\Gamma(\alpha)}$ has a composition factor isomorphic to A_{m-1} .

۲

★ E ► ★ E ►

Some Results

Proposition (S., Swartz (2016)

Let Γ be a *G*-arc-transitive graph with a *G*-permutable *m*-matching, where $m \ge 6$. If $\{\alpha, \beta\}$ is an edge of Γ , then there is a subgroup $U \le G_{\alpha\beta}$ such that $U^{\Gamma(\alpha)}$ has a composition factor isomorphic to A_{m-1} .

۲

Corollary (S., Swartz (2016)

If Γ is a *G*-arc-transitive graph with a *G*-permutable *m*-matching, where $m \ge 6$, then the degree of the graph Γ is at least *m*.

イロト イポト イヨト イヨト

Classifying 2-Transitive Perfect Matchings

A Characterization

Outline

Alex Schaefer Classifying 2-Transitive Perfect Matchings

・ロ と く 理 と く 国 と ・

Theorem (S., Swartz (2016)

Let Γ be a connected graph with a perfect matching \mathcal{M} (with *m* edges) such that Aut(Γ) is 2-transitive on \mathcal{M} . Then Γ is one of the following:

프 + + 프 +

ъ

Case 1

A join between two graphs that are either complete or edgeless:

a)
$$K_m \vee K_m \cong K_{2m}$$
,
b) $K_m \vee \overline{K}_m$,
c) $\overline{K}_m \vee \overline{K}_m \cong K_{m,m}$

Alex Schaefer Classifying 2-Transitive Perfect Matchings

 $\langle \Box \rangle \langle \Box \rangle$

(< ≥) < ≥)</p>

æ

Case 2

A *matching join* between two graphs that are either complete or edgeless (but not both edgeless):

- a) $K_m \vee K_m$,
- **b)** $K_m \underline{\lor} \overline{K}_m$,

Alex Schaefer Classifying 2-Transitive Perfect Matchings

* 聞 > * ヨ > * ヨ > -

Case 3

Let $m = p^f \equiv 3 \mod 4$ with p prime

- a) Γ is the incidence graph of the Paley symmetric 2-design over GF(p^f),
- **b)** Γ is the graph obtained from the incidence graph of the Paley symmetric 2-design over $GF(p^f)$ by replacing the independent sets with copies of K_{p^f}

(Note for *a*: the points of this design are elements of $GF(p^f)$ and the blocks are the translates of the set of nonzero squares, i.e. $V(\Gamma) = GF(p^f) \times \{0, 1\}$ and $(x, i), (y, j) \in V(\Gamma)$ are adjacent iff i = 0, j = 1, and y - x is a square in $GF(p^f)$)

・ロト ・ 同ト ・ ヨト ・ ヨト

Case 4

Let m = 5

a) Γ is the Petersen graph,

b) $\Gamma = K_{10} \setminus \{2 \cdot C_5\}$, where $V(\Gamma) = [10]$ and the two removed cycles are (1, 2, 3, 4, 5) and (6, 8, 10, 7, 9).

Alex Schaefer Classifying 2-Transitive Perfect Matchings

ヘロト 人間 ト イヨト イヨト

E DQC

Thank You!

Alex Schaefer Classifying 2-Transitive Perfect Matchings

イロト イポト イヨト イヨト

∃ ∽ へ (~