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Introduction

Signed Graphs

A signed graph is a triple Σ = (V ,E , σ).

(V ,E) is called the underlying or unsigned graph of Σ.
σ : E 7→ {+,−} is a function.
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Introduction

Balance

The sign of a subgraph is the product of the signs of its
edges.

A positive cycle is called balanced.
A graph in which every cycle is balanced is a balanced
signed graph.
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Introduction

Switching

Choose a (possibly empty) edge cut, and negate every
edge in it.

This changes the sign of no cycle.
We can then partition the set of signings of an underlying
graph into switching (isomorphism) classes.
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The Negative Cycle Vector

For each switching class, make a vector where each entry
is the number of negative cycles of length k .

Question: does this vector uniquely identify a
switching class of Kn?
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Cycle Vector Space

A Conjecture

Make a large matrix where every row is the negative cycle
vector of some switching class.

This matrix has (cycle spectrum) columns and (in general)
TONS of rows.

Conjecture
This matrix has full column rank for any underlying graph.

Theorem (S. 2015)
This matrix has full column rank for Kn and Km,n.
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Cycle Vector Space

The Method

Choose a collection corresponding to a certain kind of
signing, show it spans.

The collection that appears to work for almost everything:
A maximum negative matching and it’s submatchings
However...
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Permutability

Definition

LetM be a matching in a graph Γ with m edges, and
G ≤ Aut(Γ). SayM is G-permutable if GE(M) ∼= Sm.

If such anM exists, say Γ contains an m-permutable
matching.
The computations done previously only work on
permutable matchings!
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Permutability

Some Results

Proposition (S., Swartz (2016)
Let Γ be a G-arc-transitive graph with a G-permutable
m-matching, where m ≥ 6. If {α, β} is an edge of Γ, then there
is a subgroup U ≤ Gαβ such that UΓ(α) has a composition
factor isomorphic to Am−1.

Corollary (S., Swartz (2016)
If Γ is a G-arc-transitive graph with a G-permutable m-matching,
where m ≥ 6, then the degree of the graph Γ is at least m.
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A Characterization

Theorem (S., Swartz (2016)
Let Γ be a connected graph with a perfect matchingM (with m
edges) such that Aut(Γ) is 2-transitive onM. Then Γ is one of
the following:
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A Characterization

Case 1
A join between two graphs that are either complete or
edgeless:

a) Km ∨ Km ∼= K2m,
b) Km ∨ K m,
c) K m ∨ K m ∼= Km,m
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A Characterization

Case 2
A matching join between two graphs that are either complete or
edgeless (but not both edgeless):

a) Km∨Km,
b) Km∨K m,
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A Characterization

Case 3

Let m = pf ≡ 3 mod 4 with p prime
a) Γ is the incidence graph of the Paley symmetric 2-design

over GF (pf ),
b) Γ is the graph obtained from the incidence graph of the

Paley symmetric 2-design over GF (pf ) by replacing the
independent sets with copies of Kpf

(Note for a: the points of this design are elements of GF (pf )
and the blocks are the translates of the set of nonzero squares,
i.e. V (Γ) = GF (pf )×{0,1} and (x , i), (y , j) ∈ V (Γ) are adjacent
iff i = 0, j = 1, and y − x is a square in GF (pf ))
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A Characterization

Case 4
Let m = 5

a) Γ is the Petersen graph,
b) Γ = K10 \ {2 · C5}, where V (Γ) = [10] and the two removed

cycles are (1,2,3,4,5) and (6,8,10,7,9).
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A Characterization

Thank You!

Alex Schaefer Classifying 2-Transitive Perfect Matchings


	Introduction
	Cycle Vector Space
	Permutability
	A Characterization

