Quiz 9

Name	\mathbf{of}	Student	(Print):	v

Today's Date: November 7, 2017

- 1. For a certain product, it is known that the relationship between price (p) and demand (q) is given as p = -0.02q + 12.
 - (a) Give the expression of revenue as a function of demand q. At which demand level will the revenue get maximized? 1et R'(8)=0 = 2 - 12

R'(9) = -0.02x29+12

$$R''(9) = -0.04 < 0 = 300$$

(b) Find the elasticity function E(p) (as a function of price p). When q = 300 revenue

$$Q = \frac{12-p}{0.03} = -50p+600$$
 $\frac{d9}{d10} = -50$ maxed

$$Q = \frac{12 - P}{0.03} = -50p + 600 \qquad \frac{d9}{d9} = -50 \qquad \text{maxeed}$$

$$E(p) = -\frac{P}{2} \cdot \frac{d9}{dp} = \frac{P}{-50p + 600} \cdot (-50) = \frac{50p}{-50 + 600} = \frac{-p}{-50p + 600}$$
i. Calculate $E(10)$ and interpret it.

$$E(10) = \frac{-10}{10-12} = 5 > 1$$

ii. At which price level will the revenue get maximized?

- 2. Consider the function: $f(x,y) = x \ln(xy)$
 - (a) What's the domain of f(x,y)?

(a) What's the domain of
$$f(x,y)$$
?
$$Q_{(X,Y)} = \{(X,Y) \mid XY > 0 \} \quad \text{or} \quad X < 0 \text{ } Y < 0 \text{ }$$

(b) Calculate the first order partial derivatives $f_x(x, y)$ and $f_y(x, y)$:

fy (x,y) =
$$\chi$$
 $\frac{1}{\chi y}$ χ = $\frac{\chi}{y}$ (c) Calculate the second order partial derivative $f_{xy}(x,y)$: