Instructions: Complete each of the following on separate, stapled sheets of paper.

- 1. Let G be a simple graph with finitely many vertices. Prove that G has an even number of vertices of odd degree.
- 2. Prove that every graph with at least two vertices has at least two vertices with the same degree.
- 3. Prove that every subgraph of a bipartite graph is bipartite.
- 4. For the graphs below, decide whether or not the graph is bipartite. Prove your response correct.

- 5. Let G be a simple graph with 2n vertices and suppose G has at least $\binom{n}{2}^2$ edges. Prove that G is not bipartite.
- 6. Prove that the complete graph K_{2n} has a perfect matching for all $n \in \mathbb{Z}_{>0}$.
- 7. For what values of $m, n \in \mathbb{Z}_{>0}$ does the complete bipartite graph $K_{m,n}$ have a perfect matching? Prove it.
- 8. For each bipartite graph below, use the Augmenting Paths Algorithm to either compute a perfect matching in the graph or find a set of vertices demonstrating the impossibility of this task.

- 9. Let G be a bipartite graph and $r \in \mathbb{Z}_{>0}$. Prove that if G is r-regular, then G has a perfect matching.
- 10. Let G be a simple graph. Prove that the connection relation in G is an equivalence relation on V(G).
- 11. Let G be a graph and $v \notin V(G)$. Obtain a new graph v * G from G with vertices $V(v * G) = V(G) \cup \{v\}$ and edges $E(v * G) = E(G) \cup \{\{v, w\} : w \in V(G)\}$. In particular, v * G is the graph obtained by adding a new vertex to G and adding all possible edges from the new vertex to the old vertices.
 - (a) Draw $v * C_n$ for $n \in \{3, 4, 5, 6, 7\}$.
 - (b) Prove $K_{n+1} = (n+1) * K_n$ for all $n \in \mathbb{Z}_+$.
 - (c) Prove $\chi(v*G) = \chi(G) + 1$ for all graphs G.
- 12. Compute the chromatic number of the graph below.

¹HINT: Use the Marriage Theorem and the Pigeonhole Principle. Recall that G is r-regular means every vertex of G has degree r.