5-15 Use the Divergence Theorem to calculate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{S}$; that is, calculate the flux of \mathbf{F} across S
7. $\mathbf{F}(x, y, z)=\left\langle 2 x y^{2}, x e^{z}, z^{3}\right\rangle, S$ is the surface of the solid bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1$ and $x=2$
9. $\mathbf{F}(x, y, z)=\left\langle x e^{y}, z-e^{y},-x y\right\rangle, S$ is the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=4$
11. $\mathbf{F}(x, y, z)=\left\langle 2 x^{3}+y^{3}, y^{3}+z^{3}, 3 y^{2} z\right\rangle, S$ is the surface of the solid bounded by the paraboloid $z=1-x^{2}-y^{2}$ and the $x y$-plane
13. $\mathbf{F}=|\mathbf{r}| \mathbf{r}$, where $\mathbf{r}=\langle x, y, z\rangle, S$ consists of the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ and the disk $x^{2}+y^{2} \leq 1$ in the $x y$-plane
17. Use the Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\left\langle z^{2} x, y^{3} / 3+\tan z, x^{2} z+y^{2}\right\rangle$ and S is the top half of the sphere $x^{2}+y^{2}+z^{2}=1$.

