5-10 Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
6. $\int_{C}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y, C$ is the triangle with vertices $(0,0),(2,1)$ and $(0,1)$
7. $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos \left(y^{2}\right)\right) d y, C$ is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$
9. $\int_{C} y^{3} d x-x^{3} d y, C$ is the circle $x^{2}+y^{2}=4$

11-14 Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. (Check the orientation of the curve before applying the theorem.)
11. $\mathbf{F}(x, y)=\langle y \cos x-x y \sin x, x y+x \cos x\rangle, C$ is the triangle from $(0,0)$ to $(0,4)$ to $(2,0)$ to $(0,0)$
13. $\mathbf{F}(x, y)=\langle y-\cos y, x \sin x\rangle, C$ is the circle $(x-3)^{2}+(y+4)^{2}=4$ oriented clockwise
17. Use Green's Theorem to find the work done by the force $\mathbf{F}(x, y)=\left\langle x(x+y), x y^{2}\right\rangle$ in moving a particle from the origin along the x-axis to $(1,0)$, then along the line segment to $(0,1)$ and then back to the origin along the y-axis.

