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F ! E, to get n homomorphism '̂ : E ! E that fix the elements of F .
Each of these is injective, and F -linear. Since E is finite dimensional over F ,
each '̂ is a bijection, hence an element of AutF (E). In other words, we have
AutF (E) � [E : F ]. From Proposition 7.4.1.2 we have AutF (E)  [E : F ],
so we get the desired equality.

Given a field tower E/L/F , some properties of the big extension E/F 04/15/19

imply the same properties for the two step extensions, E/L and L/F . That
is the case for the properties:

Finite See Corollary 6.4.4, the Multiplicative Property of Extension De-
grees.

Algebraic See Corollary 6.4.10.

Separable See Proposition 7.2.5.

However, this is not the case for normal extensions. For example, in the
tower Q( 3

p
2 ,!)/Q( 3

p
2 )/Q, the big extension Q( 3

p
2 ,!)/Q is normal, the

splitting field of x3 � 2 2 Q[x]. However, Q( 3
p
2 )/Q is not normal (see

Example 7.4.2.1).

We do get, however, the following lemma, whose proof is immediate.

Lemma 7.4.7 Let E/L/F be a field tower. If E/F is normal, then E/L is

normal.

Combining this lemma with Proposition 7.2.5 and Proposition 7.4.3.4, we
get:

Proposition 7.4.8 Let E/L/F be a field tower. If E/F is a Galois exten-

sion, then E/L is also Galois.

For a finite extension E/F , the property of being Galois has some im-
portant consequences that make them nice and convenient to work with.
The main of those properties is the Fundamental Theorem of Galois The-
ory, coming up in the next section. Here is another nice property of Galois
extensions.
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Proposition 7.4.9 Let E/F be a finite Galois extension. If p(x) 2 F [x] is
irreducible and has a root in E, then it splits in E, and is separable.

E
'̂ // E

L

'

s

<<

F

i

EE

r

Proof. By Proposition 7.4.3, E is the splitting field of a separable
polynomial f(x) 2 F [x]. Let u 2 E be a root of p(x), and let
L = F (u). Let r = deg(p(x)). By Scholium 7.1.8, the number of
ways of extensing the inclusion map i : F ! E to a homomorphism
' : F (u) ! E is the number s of distinct roots of p(x) in E, and
each of these ' fixes the coe�cients of f(x). Applying Lemma 7.4.6,
to the extension E/F and map i, and to the extension E/L and
each of the maps ', we get:

• there are [E : L] ways to extend each ' : L ! E to a homomorphism
'̂ : E ! E.
• there are [E : F ] ways of extending the inclusion map to a homomorphism
'̂ : E ! E.
Thus, we have

[E : F ] = s · [E : L]  r · [E : L] = [L : F ] · [E : L] = [E : F ]

and therefore s = r, i.e. p(x) has r distinct roots in E. It splits in E, and is
separable.

7.4.3 The Fundamental Theorem

We now have all the elements needed to state and prove the Fundamental
Theorem of Galois Theory. As indicated earlier, we have limited our attention
to the finite extension case. We should point out, however, that there is
a slightly weaker, and more complicated version that holds for arbitrary
extensions, finite or infinite, but we will not cover it here.

Before stating and proving the Fundamental Theorem, let’s take a look
at the following example. Recall from Examples 6.4.2 and 7.1.2.4 that
E = Q( 3

p
2 ,!) is the splitting field of x3�2 2 Q[x], and GalQ(E) ⇡ D

3

⇡ S
3

.
Some of the intermediate fields of this extension appear in the following di-
agram. The numbers indicate the degree of each extension. Double lines
denote normal extensions.

Version 2019.5.9
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Q( 3
p
2 ,!)

Q( 3
p
2 )

2

Q(! 3
p
2 )

2

Q(!2

3
p
2 )

2

Q(!)

3

Q
3 3

3

2

On the other hand, we have that the lattice of subgroups of S
3

looks like:

S
3

h(2 3)i

3

h(1 3)i

3

h(1 2)i

3

h(1 2 3)i

2

{1}
2 2

2

3

where double lines denote normal subgroups, and the numbers next to the
edges denote the index.

Notice the remarkable similarity between these two lattices. The Funda-
mental Theorem of Galois Theory tells us, among other things, that this is
not a coincidence. That such similarity holds for any Galois Extension, and
we will make precise the sense in which these lattices are similar. Something
else that we will get from the FTGT is that in the first lattice there are no
other intermediate fields, something we have not established yet, and not at
all obvious.

Theorem 7.4.10 [The Fundamental Theorem of Galois Theory] Let 04/16/19

E/F be a (finite) Galois extension, with Galois group G = GalF (E).

1. The maps

⇤ : SubF (E) ! Sub(G)
L 7! L⇤ = AutL(E)

⇤ : Sub(G) ! SubF (E)
H 7! H⇤ = EH
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are inverse of each other, and hence bijective.

2. The maps

⇤
are order reversing, i.e. for intermediate subfields L

1

and

L
2

,

L
1

 L
2

) L⇤
2

 L⇤
1

and for subgroups H
1

, H
2

 G,

H
1

 H
2

) H⇤
2

 H⇤
1

3. The maps

⇤
preserve index, i.e. for intermediate subfields L

1

 L
2

,

[L
2

: L
1

] = [L⇤
1

: L⇤
2

]

and for subgroups H
1

 H
2

 G,

[H
2

: H
1

] = [H⇤
1

: H⇤
2

]

4. The maps

⇤
preserve normality, i.e. for intermediate subfields L

1


L
2

, L
2

/L
1

is a normal extension i↵ L⇤
2

is a normal subgroup of L⇤
1

.

Moreover, when L
2

/L
1

is a normal extension, we have

GalL1(L2

) ⇡ L⇤
1

L⇤
2

Proof. 1. We need to show that L⇤⇤ = L and H⇤⇤ = H, for any L 2 SubF (E)
and any H 2 Sub(G). From Lemma 7.4.4 we already know that L  L⇤⇤

and H  H⇤⇤.
Let L 2 SubF (E). By Propositions 7.4.8, E/L is Galois, and Proposi-
tion 7.4.3 yields L⇤⇤ = L.
Let H 2 Sub(G). From Corollary 7.4.5, the “3 = 1” property, we have
H⇤ = H⇤⇤⇤. By the Dedeking-Artin Theorem,

|H| = [E : EH ] = [E : H⇤] = [E : H⇤⇤⇤] = [E : EH⇤⇤ ] = |H⇤⇤|.

Therefore, H = H⇤⇤.

2. This was proved in Lemma 7.4.4.

Version 2019.5.9
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3. Let L 2 SubF (E). Since E/L is Galois, by Proposition 7.4.3 we have:
[E : L] = |AutL(E)| = |L⇤|. Now, if L

1

, L
2

2 SubF (E) are such that L
1

 L
2

,
then, using the multiplicative property of extension degrees,

[L
2

: L
1

] =
[E : L

1

]

[E : L
2

]
=

|L⇤
1

|
|L⇤

2

| = [L⇤
1

: L⇤
2

].

Let H 2 Sub(G). By the Dedekind-Artin Theorem, |H| = [E : EH ]. Now, if
H

1

, H
2

2 Sub(G) are such that H
1

 H
2

, then

[H
2

: H
1

] =
|H

2

|
|H

1

| =
[E : EH2 ]

[E : EH1 ]
= [EH1 : EH2 ] = [H⇤

1

: H⇤
2

].

4. Note first that it su�ce to consider the case when L
1

= F .
Let L 2 SubF (E). We want to show that L is a normal extension of F i↵ L⇤

is a normal subgroup of F ⇤ = G. Since L/F is a finite, separable extension,
by the Primitive Element Theorem, there is u 2 L such that L = F (u). Since
any � 2 G fixes F , we have � 2 L⇤ i↵ � fixes L, i↵ �(u) = u.
Assume L/F is a normal extension. By Proposition 7.4.9, minF (u) splits in L.
Let � 2 L⇤ and ⌧ 2 G. We want to show ⌧�1�⌧ 2 L⇤. By Proposition 7.1.5
⌧(u) is a root of minF (u), and therefore ⌧(u) 2 L. Therefore �(⌧(u)) = ⌧(u),
and ⌧�1�⌧(u) = u. So, ⌧�1�⌧ 2 L⇤.
Conversely, assume L⇤ is a normal subgroup of G.
Claim: minF (u) splits in L. Suppose otherwise, i.e. there is a root v 2 E
of minF (u) such that v /2 L. By Proposition 7.1.5 there is a homomorphism
' : F (u) ! E such that '(u) = v. By Corollary 6.4.14, ' can be extended
to an automorphism ⌧ : E ! E, that is, ⌧ 2 AutF (E), such that ⌧(u) = v.
Since v /2 L = L⇤⇤, there is � 2 L⇤ such that �(v) 6= v. Since L⇤ E G, we
have ⌧�1�⌧ 2 L⇤. If follows that

u = ⌧�1�⌧(u) = ⌧�1�(v), and ⌧(u) = �(v) 6= v,

a contradiction.
Since minF (u) splits in L and L = F (u), L is the splitting field of minF (u),
and L/F is a normal extension.
To prove the second part of the statement, namely, that 04/17/19

GalF (L) ⇡
F ⇤

L⇤ =
G

L⇤ , (7.11)
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note that for any ⌧ 2 G, ⌧(u) is a root of minF (u), hence an element of
L. The restriction ⌧ |L maps L to L, fixing F . This tells us that ⌧ |L is an
injective F -linear transformation from the finite dimensional vector space L
to itself. It follows that ⌧ |L is bijective, and ⌧ |L 2 AutF (L). The restriction
map

⇢ : AutF (E) ! AutF (L)
⌧ 7! ⌧ |L

is a group homomorphism, and ker(⇢) = AutL(E). It is easy to show that ⇢
is surjective (see Exercise 7.4.3 below). By the First Isomorphism Theorem,
we get (7.11).

Exercise 7.4.3. Show that the restriction map ⇢ in the proof of Theo-
rem 7.4.10 is a group epimorphism.

Corollary 7.4.11 Let E/F be a (finite) Galois extension, with Galois group

G = GalF (E). Let L
1

, L
2

2 SubF (E) and H
1

, H
2

2 Sub(G).

1. (L
1

^ L
2

)⇤ = L⇤
1

_ L⇤
2

2. (L
1

_ L
2

)⇤ = L⇤
1

^ L⇤
2

3. (H
1

^H
2

)⇤ = H⇤
1

_H⇤
2

4. (H
1

_H
2

)⇤ = H⇤
1

^H⇤
2

Exercise 7.4.4. Prove Corollary 7.4.11 using only the statement of the Fun-
damental Theorem.

Exercise 7.4.5. Prove the general case in Part 7.4.10.4 of Theorem 7.4.10
using the special cased already proved.

PS 06

7.4.4 More Examples

04/22/19

We now present a few more examples to illustrate the Fundamental The-
orem.

Version 2019.5.9



108 CHAPTER 7. GALOIS THEORY

Examples 7.4.3. 1. Let E be the finite field E = Fpn . By Proposi-
tion 7.2.4, E is separable over F = Fp. In the proof of Theorem 6.6.6
we showed that E is the splitting field of xpn � x 2 Fp[x], so E/F is
a normal extension. It is a Galois extension. The subfields of E are
all the finite fields of the form Fpd as d ranges over the divisors of n.
It follows that the lattice of subfields of E is isomorphic to the lattice
of divisors of n. On the other hand, the Galois group G = GalF (E)
is cyclic of order n. The subgroups of G are cyclic groups of order d
where d ranges over the divisors of n. As G is abelian, all subgrops of
G are normal. On the other hand, all subfields of E are normal over
Fp.

2. Let E = Q(
p
2 ,

p
3 ) and F = Q. In Example 7.3.2 we have seen that

E is the splitting field of (x2�2)(x2�3), so E/F is a Galois extension.
We also showed that GalF (E) is the Klein 4-group V = {I, �

1

, �
2

, �
3

},
where

I :
p
2 7!

p
2 �

1

:
p
2 7!

p
2p

3 7!
p
3

p
3 7! �

p
3

�
2

:
p
2 7! �

p
2 �

3

:
p
2 7! �

p
2p

3 7!
p
3

p
3 7! �

p
3

The lattice of subgroups of V is

V

h�1i h�
3

i h�
2

i

{I}

so the diagram of subfields of E on page 92 is missing one subfield.
Q(

p
2 ) is the subfield fixed by h�

1

i, and Q(
p
3 ) is the subfield fixed by

h�
2

i. We are missing the subfield fixed by h�
3

i. It is easy to see that
�
3

(
p
6 ) =

p
6 , and it follows that the subfield fixed by h�

3

i is precisely
Q(

p
6 ). Moreover, the Fundamental Theorem of Galois Theory tells us

that there are no other subfields of E. Here is the lattice of subfields.
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Q(
p
2 ,

p
3 )

Q(
p
2 ) Q(

p
6 ) Q(

p
3 )

Q

3. From Example 7.4.2.4, on page 98, we have that E = Q( 4
p
2 , i), the

splitting field of x4 � 2 over Q has Galois group

G = D
4

= {I, �
1

, �
2

, �
3

, �
4

, �
5

, �
6

, �
7

}.

If we denote the roots of x4 � 2 as follows:

↵
1

= 4
p
2 , ↵

2

= i 4
p
2 , ↵

3

= � 4
p
2 , ↵

4

= �i 4
p
2 ,

then the elements of G are permutations of {�
1

, �
2

, �
3

, �
4

}.

I : 4
p
2 7! 4

p
2 �

1

: 4
p
2 7! 4

p
2

i 7! i i 7! �i
✏ (↵

2

↵
4

)

�
2

: 4
p
2 7! � 4

p
2 �

3

: 4
p
2 7! � 4

p
2

i 7! i i 7! �i
(↵

1

↵
3

)(↵
2

↵
4

) (↵
1

↵
3

)

�
4

: 4
p
2 7! i 4

p
2 �

5

: 4
p
2 7! i 4

p
2

i 7! i i 7! �i
(↵

1

↵
2

↵
3

↵
4

) (↵
1

↵
2

)(↵
3

↵
4

)

�
6

: 4
p
2 7! �i 4

p
2 �

7

: 4
p
2 7! �i 4

p
2

i 7! i i 7! �i
(↵

1

↵
4

↵
3

↵
2

) (↵
1

↵
4

)(↵
2

↵
3

)
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The lattice of subgroups of G is

D
4

h�
1

, �
2

i h�
4

i h�
2

, �
7

i

h�
1

i h�
3

i h�
2

i h�
5

i h�
7

i

{I}

The fixed subfields are: 04/23/19

E�1 = Q(↵
1

) E�3 = Q(↵
2

)
E�5 = Q(↵

1

+ ↵
2

) E�2 = Q(
p
2 , i)

E�7 = Q(↵
1

+ ↵
4

) E�4 = Q(i)
Eh�1,�2i = Q(↵2

1

) = Q(
p
2 ) Eh�2,�7i = Q(↵

1

↵
2

) = Q(i
p
2 )

and the lattice of subfields is:

E

Q(↵
1

) Q(↵
2

) Q(
p
2 , i) Q(↵

1

+ ↵
2

) Q(↵
1

+ ↵
4

)

Q(
p
2 ) Q(i) Q(i

p
2 )

Q

4. Let E be the splitting field of f(x) = x5�20x+6 2 Q[x]. It is a Galois
extension of Q. Let G = GalQ(E) = AutQ(E). Using the Eisenstein
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Criterion, with p = 2, we see that f(x) is irreducible over Q. From the
first and second derivatives of f(x)

f 0(x) = 5x4 � 20
f 00(x) = 20x3

we see that f 00(x) has a single real root, so by the Mean Value Theorem
f 0(x) has at most two real roots, and f(x) has at most three real roots.
The table of values

x �3 0 1 3
f(x) �177 6 �13 189

and the Intermediate Value Theorem, tell us that f(x) has three real
roots. Therefore of the five roots of f(x), three of them ↵

1

,↵
2

,↵
3

are
real, and the other two are non-real conjugate of each other ↵

4

= ↵
5

.

Complex conjugation ⌧ : C ! C, given by a + bi 7! a � bi, fixes the
coe�cients of f , and therefore it permutes its roots. Restricting ⌧ to
E yields an automorphism of E that fixes Q, i.e. ⌧ 2 G. Since ⌧
fixes all real numbers, as a permutation of the roots, we can write it
⌧ = (↵

4

↵
5

).
Since f(x) is irreducible over Q, the extension Q(↵

1

) has degree 5 over
Q. By the multiplicative property of extension degrees, we get that 5
divides [E : Q] = |G|  S

5

. The only elements in S
5

of order 5 are
5-cycles, so by Caucy’s Theorem G contains a 5-cycle, call it ⇢. It is
easy to see that ⇢ and ⌧ generate all of S

5

, see Exercise 7.4.8 below.
Therefore G ⇡ S

5

. We immediately get that [E : Q] = 120. The lattice
of subgroups of S

5

is large, and so is the lattice of intermediate fields of
E/Q. It can be shown that the only proper non-trivial normal subgroup
of S

5

is A
5

. Therefore, of all intermediate subfields of E/Q there is only
one that is normal over Q, and it must have degree 2.

Exercise 7.4.6. Show that the transpositions (1 2), (2 3), . . . , (n � 1 n)
generate the group Sn.

Exercise 7.4.7. Show that Sn is generated by the following two permuta-
tions:

⇢ = (1 2 . . . n) and � = (1 2)

Version 2019.5.9
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root of

unity|slantit

complex n-th roots

of unity

cis|slantit

µn

primitive roots of

unity|slantit

Exercise 7.4.8. Let p be prime, ⇢ a p-cycle, and � a transposition. Show
that ⇢ and � generate Sp. Show, by counterexample, that the hypothesis of
p being prime cannot be removed.

Exercise 7.4.9. Refer to Example 7.4.3.4. Show that

E \ R = Q(↵
1

,↵
2

,↵
3

).

7.5 Cyclotomic Extensions of Q

We now extend the results in Proposition 7.3.1 from the case of a prime p to
arbitrary positive integer n.

The roots of the complex polynomial xn�1 are called complex n-th roots of
unity . By Theorem 4.1.5 there are at most n of them, counting multiplicity.
A simple check shows that if we let ⇠n = cos(2⇡

n
)+i sin(2⇡

n
) (cis(2⇡

n
) for short),

then the following:
1, ⇠n, ⇠

2

n, . . . , ⇠
n�1

n

are all roots of the polynomial, and hence they are all the n-th roots of unity
and each has multiplicity 1.

Note that the n-th roots of unity form a multiplicative subgroup of C⇤

of order n. Let’s denote it by µn . By Proposition 6.6.8 it must be cyclic
and it is obvious that ⇠n = cis(2⇡

n
) is a generator of µn. By Proposition 2.0.1

the multiplicative order of ⇠kn is equal to
n

g.c.d.(n, k)
. In particular ⇠kn is a

generator of µn, i.e. has order n, i↵ g.c.d.(n, k) = 1. Such ⇠kn’s are called
primitive n-th roots of unity .

Proposition 7.3.1 tells us that when p is a prime number the polynomial

�p(x) = xp�1 + xp�2 + · · ·+ x2 + x+ 1

is irreducible over Q. We called it the p-th cyclotomic polynomial. Its roots
are precisely the primitive p-th roots of unity, so �p(x) is the minimal poly-
nomial over Q of any primitive p-th root of unity. We want to extend the
previous ideas and results to non-primes. Observe that Q(⇠n) is the splitting
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cyclotomic

polynomial

field of xn � 1 over Q. The polynomial

�n(x) =
Y

g.c.d.(n,k)=1

(x� ⇠k)

whose roots are precisely the primitive n-th roots of unity, is called the n-th
cyclotomic polynomial.

Since any root of xn � 1 is an element of µn, its order has to be a divisor
d of n. It is a primitive d-th root of unity, i.e. a root of �d(x). Since xn � 1
has no multiple roots, it follows that

xn � 1 =
Y

d|n

�d(x) (7.12)

which gives us a recursive method to compute the cyclotomic polynomials.
First of all, when we take n = 1 we get

(x� 1) = �
1

(x).

When n = p is a prime then we get

xp � 1 = �
1

(x) · �p(x)

which yields what we already knew

�p(x) =
xp � 1

x� 1
= xp�1 + xp�2 + · · ·+ x2 + x+ 1

PS 0704/24/19

Now, for a non-prime like n = 6, to compute �
6

(x) we only need to know
�
1

(x) = (x� 1), �
2

(x) = x+ 1 and �
3

(x) = x2 + x+ 1. Thus we have

x6 � 1 = �
1

(x) · �
2

(x) · �
3

(x) · �
6

(x)

so

�
6

(x) =
x6 � 1

(x� 1)(x+ 1)(x2 + x+ 1)
= x2 � x+ 1.

Version 2019.5.9
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Similar computations yield the following:

�
1

(x) = x� 1
�
2

(x) = x+ 1
�
3

(x) = x2 + x+ 1
�
4

(x) = x2 + 1
�
5

(x) = x4 + x3 + x2 + x+ 1
�
6

(x) = x2 � x+ 1
�
7

(x) = x6 + x5 + x4 + x3 + x2 + x+ 1
�
8

(x) = x4 + 1
�
9

(x) = x6 + x3 + 1
�
10

(x) = x4 � x3 + x2 � x+ 1
�
11

(x) = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+�1
�
12

(x) = x4 � x2 + 1

Exercise 7.5.1. Use the recursive formula (7.12) to obtain the cyclotomic
polynomials in the table above.

We can easily see patterns connecting di↵erent cyclotomic polynomials.
It is a fun exercise to write them down and try to prove them.

Exercise 7.5.2. 1. How are �n(x) and �
2n(x) related when n is odd?

Prove it.

2. How are �n(x) and �2n(x) related when n is even? Prove it.

3. Prove that for n > 2 the degree of �n(x) is even.

Proposition 7.5.1 [Gauss] The cyclotomic polynomial �n(x) is monic, 04/26/19

irreducible with integral coe�cients.

Proof. The fact that it is monic is immediate from the definition. That it
has rational coe�cients follows by induction on n and the division algorithm
for the Euclidean Domain Q[x]. From the recursive formula (7.12) we have
in Q(⇠)

xn � 1 = �n(x) ·
Y

d|n,d<n

�d(x) (7.13)

Since, by inductive hypothesis,
Y

d|n,d<n

�d(x) 2 Q[x], the existence in Q[x] and

the uniqueness in C[x] from the division algorithm forces �n(x) to be in Q[x].
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Now, using again induction on n and Corollary 4.5.8 to Gauss’ Lemma, we
get that �n(x) 2 Z[x].
To see that �n(x) is irreducible, write �n(x) = f(x) · g(x) with f(x), g(x) 2
Z[x], and f(x) irreducible. Since �n(x) is monic, WLOG we can take both
f(x) and g(x) to be monic, hence primitive. We claim that if � is a root of
f(x) and p is a prime not divisor of n then �p is also a root of f(x). Assume
otherwise. Note, first of all, that f(x) is the minimal polynomial for � over
Q. Since p -n, �p is also a primitive n-th root of unity, hence a root of �n(x).
From the assumption that �p is not a root of f(x) we get that it has to be
a root of g(x), so g(�p) = 0, and � is a root of g(xp). This means that f(x)
divides g(xp), i.e. g(xp) = f(x) ·h(x) for some h(x) 2 Z[x]. Let’s now reduce
coe�cients modulo p to get

g(x)p = g(xp) = f(x) · h(x) 2 Zp[x]

which tells us that any root of f(x) is also a root of g(x). Since �n(x) =
f(x) · g(x), then �n(x) has a multiple root, and so does xn � 1 2 Zp[x]. But
this contradicts Proposition 6.6.2 since p - n, and (xn � 1)0 = nxn�1, whose
only root is 0. Repeated use of the claim we just proved, shows that for any
k with g.c.d.(k, n) = 1, �k is a root of f(x), so all the roots of �n(x) are roots
of f(x). Since �(x) has no multiple roots then we conclude that g(x) = 1
and �(x) = f(x) is irreducible.

Theorem 7.5.2 The extension Q(⇠n)/Q is a Galois extension of degree

[Q(⇠n) : Q] = '(n) and Galois group

Gal(Q(⇠n)/Q) ⇡ Un,

the multiplicative group of units of the ring Zn.

Proof. We have already seen that Q(⇠n) is the splitting field of xn�1 2 Q[x],
so Q(⇠n)/Q is Galois. Since �n(x) is irreducible and monic it is the minimal
polynomial of ⇠n over Q, and therefore [Q(⇠n) : Q] = deg(�n(x)) = '(n),
the number of primitive n-th roots of unity. For each k between 1 and n,04/29/19

relatively prime to n, ⇠kn is a primitive n-th root of unity, so there is an
automorphism

 k : Q(⇠n) ! Q(⇠n)
⇠n 7! ⇠kn
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Klein

group|slantit

but these k’s are precisely the elements of Un. Moreover, if k, l 2 Un then

 k �  l(⇠n) =  k(⇠
l
n) = ⇠kln =  kl(⇠n),

and  k �  l =  kl. So, the map

 : Un ! Gal(Q(⇠n)/Q)
k 7!  k

is the desired isomorphism.

Exercise 7.5.3. Show that the map  in the proof of Theorem 7.5.2 is indeed
injective and surjective.

Exercise 7.5.4. Show that if d is a divisor of n then Q(⇠d) is a subfield of
Q(⇠n). Conclude that '(d) divides '(n), and Ud is a quotient of Un.

Example 7.5.1. Let’s analize the cyclotomic extension for n = 12 in detail.
Let’s write ⇠ for ⇠

12

. We have '(12) = 4, so [Q(⇠) : Q] = 4 and minQ(⇠) =
x4 � x2 + 1. The group U

12

= {1, 5, 7, 11} is isomorphic to the Klein group
, and its non-trivial proper subgroups are {1, 5}, {1, 7}, and {1, 11}, for a
total of five subgroups. For each divisor d of 12, ⇠12/d is a primitive d-th
root of unity, and by Exercise 7.5.4 we have that Q(⇠12/d) is a subfield of
Q(⇠). This seems to give us more subfields than we would expect based on
the FTGT. The subfields are: Q(⇠12), Q(⇠6), Q(⇠4), Q(⇠3), Q(⇠2), and Q(⇠).
Note, however, that in addition to ⇠12 = 1, ⇠ also satisfies the equations

⇠2 = ⇠4 + 1 and ⇠6 = �1. (7.14)

This tells us that

Q(⇠12) = Q(⇠6) = Q and Q(⇠4) = Q(⇠2),

so we really only have Q, Q(⇠3), Q(⇠2), and Q(⇠), one fewer that the five
fields we expect. Clearly Q⇤ = U

12

= {1, 5, 7, 11}, and Q(⇠)⇤ = {1}. Now,
note that (⇠2)7 = ⇠14 = ⇠2, so Q(⇠2) is fixed by  

7

: ⇠ 7! ⇠7. In fact, since
⇠2 = ⇠

6

is a root of the irreducible polynomial �
6

(x) = x2 � x + 1, we have
[Q(⇠2) : Q] = 2, and this forces Q(⇠2)⇤ = {1, 7}. A similar argument, noting
that (⇠3)5 = ⇠15 = ⇠3, shows that Q(⇠3)⇤ = {1, 5}. That leaves us with
the question of what is the field {1, 11}⇤? A generic element of Q(⇠) can be
uniquely written as

� = a
0

+ a
1

⇠ + a
2

⇠2 + a
3

⇠3 with a
0

, a
1

, a
2

, a
3

2 Q
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When we apply the automorphism  
11

to �, and using Equations 7.14, we
get

 
11

(�) = a
0

+ a
1

⇠11 + a
2

⇠22 + a
3

⇠33

= a
0

� a
1

⇠5 � a
2

⇠4 � a
3

⇠3

= a
0

� a
1

(⇠3 � ⇠)� a
2

(⇠2 � 1)� a
3

⇠3

= (a
0

+ a
2

) + a
1

⇠ � a
2

⇠2 � (a
1

+ a
3

)⇠3

So, we get that  
11

(�) = � i↵ a
2

= 0 and a
1

= �2a
3

. Therefore {1, 11}⇤ =
Q(⇠3 � 2⇠). We have

⇠ = cis(2⇡/12) =
p
3

2

+ 1

2

i,
⇠3 � 2⇠ = cis(2⇡/4)� 2cis(2⇡/12) = i� (

p
3 + i) = �

p
3 ,

and therefore {1, 11}⇤ = Q(
p
3 ).

We summarize these calculations in the following lattice diagrams:

Q(⇠)

Q(⇠2)

2

Q(⇠3)

2

Q(
p
3 )

2

Q
2

2

2

{1}

{1, 7}

2

{1, 5}

2

{1, 11}

2

{1, 5, 7, 11}
2

2

2

Since the group U
12

is abelian, all subgroups are normal, and all extensions
are Galois.

An important consequence of Theorem 7.5.2 is the following corollary.

Corollary 7.5.3 Let F be a field of characteristic zero, and ⇠ = ⇠n a primi-

tive n-th root of unity. The extension F (⇠)/F is Galois, and its Galois group

is isomorphic to a subgroup of Un, hence it is abelian.

Proof. Note that �n(x) 2 F [x] since Q is a subfield of F , and ⇠ is a root of
�n(x). Therefore minF (⇠) divides �n(x), and the roots of minF (⇠) are some
of the primitive n-th roots of unity. It follows that all automorphisms of the
extension F (⇠)/F are of the form  k : ⇠ 7! ⇠k, and the map

⌥ : Gal(F (⇠)/F ) ! Un

 k 7! k
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n
p
a is a monomorphism.

Exercise 7.5.5. Show with an example that Gal(F (⇠)/F ) does not need to
be all of Un, i.e. the map ⌥ used in the proof of Corollary 7.5.3 need not be
surjective.

Exercise 7.5.6. Let ⇠
15

be a primitive complex 15-th root of unity.

1. Find the group Gal(Q(⇠
15

)/Q) and draw its lattice of subgroups.

2. Find and draw the lattice of intermediate fields of the extensionQ(⇠
15

)/Q.

3. Write down the correspondence between the subgroups in part 1 and
the subfields in part 2, using the Fundamental Theorem of Galois The-
ory.

7.6 The Splitting Field of xn � a

Closely related to cyclotomic extensions are the splitting fields of polynomials 04/30/19

of the form xn � a in characteristic zero. The example we have extensively
considered x3�2 is just a particular case of what we are going to consider here.

F (⇠, n
p
a )

F (⇠)

F

Let F be a field of characteristic zero, and a 2 F . Select and fix
a root of xn � a, and denote it by n

p
a . All the roots of xn � a

are of the form ⇠i n
p
a with ⇠ a primitive n-th root of unity (?) and

0  i  n � 12. The splitting field of this polynomial is F (⇠, n
p
a ).

Note that we can break this extension into a two step tower with F (⇠)
in the middle. By Corollary 7.5.3 the bottom extension is Galois with
Abelian Galois group. Now consider the top extension F (⇠, n

p
a )/F (⇠). The

minimal polynomial minF (⇠)( n
p
a ) divides xn � a, so all its roots are of the

form ⇠k n
p
a . It follows then thal all automorphisms of F (⇠, n

p
a )/F (⇠) are of

the form ⌫k : n
p
a 7! ⇠k n

p
a with 0  k < n. Note that ⌫k � ⌫l = ⌫k+l, and

⌫k = id i↵ k = 0. So the map

⌅ : Gal(F (⇠, n
p
a )/F (⇠)) ! Cn

⌫k 7! k
(7.15)

2The notation n
p
a is ambiguous since the choice is arbitrary. However, for any choice

we make, the expression ⇠

i n
p
a , with i = 0, . . . , n� 1, yields all the roots of xn � a.
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cyclic-by-abelian

Galois

group|slantit

transitive

action|slantit

solvable

group!solvable

is a monomorphism and Gal(F (⇠, n
p
a )/F (⇠)) is cyclic.

We have just proved that Gal(F (⇠, n
p
a )/F ) has a cyclic normal subgroup

Gal(F (⇠, n
p
a )/F (⇠)) with abelian quotient Gal(F (⇠)/F ). We call such group

a cyclic-by-abelian group.

Remark 7.6.1. When the splitting field of a polynomial is separable, for
example, in characteristic zero, we refer to the Galois group of the splitting
field as the Galois group of the polynomial. Proposition 7.1.5 tells us that
any element of the Galois group of a polynomial permutes its roots, and
Lemma 6.4.13 tells us that if the polynomial is irreducible then the action of
the Galois group on its roots is transitive .

So we have just proved the following theorem.

Theorem 7.6.1 Let F be a field of characteristic zero, and a 2 F . The

Galois group of the polynomial xn � a is cyclic-by-Abelian. Moreover, the

cyclic normal subgroup is a subgroup of Cn and the abelian quotient is a

subgroup of Un.

Exercise 7.6.1. Show with an example that Gal(F (⇠)/F ) does not need to
be all of Cn, i.e. the map ⌅ of Formula (7.15) used in the proof of Theo-
rem 7.6.1 need not be surjective.

Corollary 7.6.2 Let F be a field of characteristic zero, and a 2 F . If

⇠n 2 F , then F ( n
p
a ) is the splitting field of xn � a, and the Galois group of

the polynomial xn � a is cyclic.

7.7 Solvable Groups

Cyclic-by-abelian groups are a special case of a larger class of groups, the
so-called solvable groups. A group G is said to be solvable if there is a finite
sequence of subgroups

1 = H
0

EH
1

E · · ·EHn�1

EHn = G (7.16)

such that each Hi+1

/Hi is Abelian.

Version 2019.5.9
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Abelian series

solvable length

length!solvable

derived length

length! derived

metabelian

The sequence (7.16) is called an Abelian series for G and n is called the
length of the series. The smallest n for which the group G has an Abelian
series of length n is called the solvable length or derived length of G. Solvable
groups of length  2 are also called metabelian.

Examples 7.7.1. 1. Every Abelian group is solvable, of length  1, and
conversely.

2. Every cyclic-by-Abelian group is solvable of length  2. In particular
the Galois group of the splitting field of xn � a over a field of charac-
teristic zero is solvable.

3. The group A
5

is not solvable. We will prove this below in Theo-
rem 7.7.1.

Exercise 7.7.1. 1. Let G be a finite group. Show that G is solvable i↵
there is a finite sequence of subgroups

1 = H
0

 H
1

 · · ·  Hn�1

 Hn = G

such that each Hi E Hi+1

and Hi+1

/Hi is cyclic. In other words, for
finite groups, we can replace Abelian with cyclic in the definition of
solvable.

2. Show, with a counterexample, that for infinite groups the two condi-
tions are not be equivalent.

Theorem 7.7.1 The group A
5

is not solvable.

Proof. It is clear that A
5

is not Abelian, since the two three-cycles (1 2 3)
and (3 4 5) do not commute. We will show that A

5

has no proper non-trivial
normal subgroup. From these two facts the result follows. By Theorem ??.??
the non-trivial elements of A

5

have one of the following shapes when written
in disjoint cycle form:

a 3-cycle (a b c),
a 5-cycle (a b c d e).
a product of two 2-cycles (a b)(c d),

Let 1 6= H E A
5

. Consider 3 cases:
Case 1: H contains a 3-cycle (a b c). Any other 3-cycle has one or two
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simple groupsymbols in common with this one. Note that

(a b c)(a b c d e) = (b c d), (a b c)(a c e b d) = (c d e),

and since H is normal it contains all 3-cycles. By Exercise 7.7.3, we get
H = A

5

.
Case 2: H contains a 5-cycle (a b c d e). Note that

(a b c d e)(b c)(d e) = (a c b e d), and (a b c d e)(a c b e d) = (a d b).

So H contains a 3-cycle and by case 1, H = A
5

.
Case 3: H contains a product of two 2-cycles (a b)(c d). Note that

(a b)(c d)(c d e) = (a b)(d e) and (a b)(c d)(a b)(d e) = (c d e).

So H contains a 3-cycle and by case 1, H = A
5

.

It can be shown that A
5

is in fact the smallest non-solvable group, i.e.
any group of order less than or equal to 59 is solvable. A group that has no
normal subgroup other than itself and the trivial subgroups is called a simple

group.

Scholium 7.7.2 The group A
5

is simple.

Exercise 7.7.2. Show that any non-Abelian simple group is non-solvable.

Exercise 7.7.3. Prove that any element of the alternating group An can be
written as a product of 3-cycles.

Exercise 7.7.4. Determine all the simple Abelian finite groups. (Hint: use
Cauchy’s Theorem for Abelian groups, ??.)

Solvable groups have many nice properties. The following theorem is one05/01/19

of them.

Theorem 7.7.3 Let G be a group.

1. If G is solvable then so is every subgroup of G.

2. For N EG, G is solvable i↵ N and G/N are solvable.

One refers to this result by saying that the class of solvable groups is
closed under subgroups, quotients and extensions.
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Proof. (1) Suppose G is solvable. Let

1 = H
0

EH
1

E · · ·EHn�1

EHn = G (7.17)

be an Abelian series for G, and K  G a subgroup of G. It follows from the
Second Isomorphism Theorem that for i = 1, . . . , n

K \Hi�1

= K \Hi \Hi�1

EK \Hi,

and
K \Hi

K \Hi�1

=
K \Hi

K \Hi \Hi�1

⇡ (K \Hi)Hi�1

Hi�1

 Hi

Hi�1

which is Abelian. Therefore,

1 = K \H
0

EK \H
1

E · · ·EK \Hn�1

EK \Hn = K

is an Abelian series for K
(2) Assume G is solvable, with Abelian series as (7.17). Then by part (1) N
is solvable.

Exercise 7.7.5. Let G be a group. If K  G and N EG then (K \N)EK.

Corollary 7.7.4 If G and H are solvable groups then so is their direct prod-

uct G⇥H.

Exercise 7.7.6. Prove Corollary 7.7.4.

7.8 Solvability by Radicals

Throughout this section all fields we consider will have characteristic zero.
The quadratic formula

x =
�b±

p
b2 � 4ac

2a
(7.18)

expresses the solutions of the polynomial equation

ax2 + bx+ c = 0 (7.19)
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solvable by

radicals

Cardano’s formula

using the coe�cients, field constants and operations, and radicals. So, we
say that Equation 7.19) can be solved by radicals. In general, we say that the
polynomial equation f(x) = 0 is solvable by radicals if the roots of f(x) can
be expressed using the coe�cients of f(x), field constants and operations,
and taking radicals.

Board presentations PS 0805/03/19

In the early 1500’s a number of Italian mathematicians, including dal
05/06/19

Ferro, Tartaglia, Fior, Ferrari and Cardano found the solution to the de-
pressed cubic equation

x3 + ax+ b = 0 (7.20)

Cardano published it 1545 in his Ars Magna. The roots to the depressed
cubic equation (7.20) are given by:

↵
1

=
A+B

3
, ↵

2

=
!A+ !2B

3
, and ↵

3

=
!2A+ !B

3

where ! is a primitive cubic root of unity and A and B are given by

A = 3

q
�27

2

b+ 3

2

p
�3D

B = 3

q
�27

2

b� 3

2

p
�3D

D = �4a3 � 27b2

This solution became known as Cardano’s formula.

A simple change of variable can transform any cubic equation into a
depressed one, hence Cardano’s formula can be used to solve any cubic equa-
tion.

Exercise 7.8.1. Show that the change of variable y = x+ (a/3) transforms
the general cubic equation

x3 + ax2 + bx+ c = 0

into a depressed cubic. Therefore, Cardano’s formula is useful to solve any
cubic equation.
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radical extension

radical tower

root extension

solvable by

radicals

Galois cyclic

Note that Cardano’s formula involves only the equation’s coe�cients, field
constants and operations, and (repeated) taking of radicals. So it shows that
any cubic equation can be solved by radicals.

With these two examples in mind, we can now proceed to the appropriate
definition.

Definition 7.8.1. 1. A field extension of the form F (↵)/F where ↵ is a
root of a polynomial xn � a 2 F [x] for some a 2 F , is called a radical

extension.

2. A tower of fields E = Fl/Fl�1

/ . . . /F
1

/F
0

= F is called a radical tower if
each Fi is a radical extension of Fi�1

, i.e. Fi = Fi�1

(↵i) where ↵i is
a root of a polynomial of the form xni � ai where ai 2 Fi�1

. In other
words, any element of Fi can be obtained from elements of Fi�1

, using
field operations, and an n-th root of ai. The extension E/F is called a
root extension.

3. A polynomial f(x) 2 F [x] is said to be solvable by radicals if all its
roots, and hence its splitting field, can be included in a root extension.

Remark 7.8.1. 1. Note that any quadratic extension is a radical exten-
sion.

2. Corollary 7.6.2 tells us that the radical extension F (↵)/F with ↵ = n
p
a

i.e. a root of xn � a 2 F [x], is a Galois extension with cyclic Galois
group provided ⇠n 2 F . We call such extension a Galois cyclic extension.

3. To say that E/F is a root extension means that there are ↵
1

, . . . ,↵l 2
E and n

1

, . . . , nl 2 N, such that E = F (↵
1

, . . . ,↵l), with ↵ni
i 2

F (↵
1

, . . . ,↵i�1

).

4. Every root extension is a finite extension.

Theorem 7.8.1 Let F be a field of characteristic zero, and f(x) 2 F [x]. If

f(x) is solvable by radicals, then its Galois group is solvable.

In order to prove this theorem we will need the following lemmas. 05/07/19

Lemma 7.8.2 1. Let E
1

/F and E
2

/F be isomorphic as F -extensions.

E
1

/F is a root extension i↵ E
2

/F is also a root extension.
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2. Let E
1

/F and E
2

/F be finite F -extensions, and E
1

E
2

their join, say

inside an algebraic closure of F .

[E
1

E
2

: E
2

]  [E
1

: F ] and [E
1

E
2

: E
1

]  [E
2

: F ]

3. Let E/F be a field extension, and ↵, � 2 E be such that F (↵)/F and

F (�)/F are roots extensions. Then F (↵, �)/F is also a root extension.

Proof. (1) This is obvious.
(2) Since we are working in characteristic zero, by the PET, there are ↵, �
such that E

1

= F (↵) and E
2

= F (�). Note that E
1

E
2

= F (↵, �).

E
1

E
2

= F (↵, �)

E
1

= F (↵) E
2

= F (�)

F

Let p(x) = minF (↵). Then minF (�)(↵) is a factor of p(x), and therefore

[E
1

E
2

: E
2

] = [F (↵, �) : F (�)] = deg(minF (�)(↵))
 deg(p(x))
= [F (↵) : F ] = [E

1

: F ].

The other inequality is similar.
(3) By assumption there are ↵

1

, . . . ,↵k and n
1

, . . . , nk 2 N such that F (↵) =
F (↵

1

, . . . ,↵k) and ↵
ni
i 2 F (↵

1

, . . . ,↵i�1

). Similarly there are �
1

, . . . , �l and
m

1

, . . . ,ml 2 N such that F (�) = F (�
1

, . . . , �l) and �mi
i 2 F (�

1

, . . . , �i�1

).
Note then that F (↵, �) = F (↵

1

, . . . ,↵k, �1, . . . , �l) showing that F (↵, �)/F
is also a root extension.

The next lemma tells us that any root extension can be embedded in a
Galois root extension with some extra features.

Lemma 7.8.3 1. Let E/F be a root extension. There is a Galois root

extension L/F such that E  L.

2. Let E/F be a Galois root extension. There is a Galois root extension

L/F , with radical tower L = Lk/Lk�1

/ · · · /L
1

/L
0

/F such that
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• E  L,

• for each i > 0, and ni = [Li : Li�1

], we have ⇠ni 2 L
1

.

Proof. (1) Note first that E/F is a separable finite extension, so by the
Primitive Element Theorem there is ↵ 2 E such that E = F (↵). Let p(x) =
minF (↵) be the minimal polynomial of ↵ over F , and L the splitting field
of p(x). We clearly have that L/F is a Galois extension and E  L. Let
G = Gal(L/F ) = {�

1

, . . . , �n}, with �1 = 1. Let ↵i = �i(↵), so ↵1

= ↵, and
Ei = �i(E) = F (↵i), so E

1

= E. For each root of p(x) there is �i 2 G such
that �i(↵) equals that root, so the list ↵

1

, . . . ,↵n contains all the roots of
p(x), maybe with repetitions. Therefore L = F (↵

1

, . . . ,↵n). Each Ei/F is
isomorphic to E/F , via �i, so by Lemma 7.8.2.1, it is a root extension, and
repeated application of Lemma 7.8.2.3 gives that L/F is a root extension.

Lk

E = Fk

Li

Fi Li�1

Fi�1

L
0

F = F
0

(2) Since E/F is a root extension, there is an extension tower

E = Fk/Fk�1

/ . . . /F
1

/F
0

= F with Fi = Fi�1

(↵i),

where each ↵i is a root of xmi � ai 2 Fi�1

[x], ai 2 Fi�1

. Let
n = ([E : F ])!, and ⇠ = ⇠n a primitive n-th root of unity. Let
Li = Fi(⇠), so that L

0

= F (⇠). Note that

Li = Fi(⇠) = Fi�1

(↵i, ⇠) = Li�1

(↵i)

Li = Fi�1

(↵i, ⇠)

Fi = Fi�1

(↵i) Li�1

= Fi�1

(⇠)

ni

Fi�1

and ai 2 Fi�1

 Li�1

, so Li/Li�1

is a radical extension. By Lemma 7.8.2.2,

ni = [Li : Li�1

]  [Fi : Fi�1

]  [E : F ]

so ni|n. Therefore ⇠n/ni 2 L
0

is a primitive ni-th root of unity. Since E/F
is a Galois extension, E is the splitting field of a polynomial f(x) 2 F [x].
Then L is the splitting field of the polynomial f(x)(xn � 1) 2 F [x], so L/F
is also Galois.
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enough roots of

unity

Remark 7.8.2. 1. The n = ([E : F ])! used in the proof of part 2 is an
overkill, as all we need is n to be a multiple of each ni. A more delicate
analysis could be used to show that in fact taking L = E works.

2. Note that the second property in part 2, together with Corollary 7.6.2,
yield that Li/Li�1

is a cyclic Galois extension. We’ll refer to this1 by
saying that L

0

contains enough roots of unity.

Board presentations PS 0905/08/19

Proof. [Proof of Theorem 7.8.1] Assume f(x) 2 F [x] is solvable by radicals.05/10/19

Let K be the splitting field of f(x) over F . Hence, K/F is normal. It is
separable since we are working in characteristic zero. We want to show that
GalF (K) is a solvable group. Let E be a root extension of F such that f(x)
splits in E, i.e. K  E. Combining both parts of Lemma 7.8.3, there is a
Galois root extension L of F , with radical tower L = Lk/Lk�1

/ · · · /L
1

/L
0

/F
such that L

0

contains enough roots of unity. Let G = GalF (L). By Propo-
sition 7.4.8, L/Li is a Galois extension. Let Hi = GalLi(L). By Corol-
lary 7.6.2 Li/Li�1

is Galois cyclic, and since L/F is Galois, by the FTGT,
Theorem 7.4.10.4, we get Hi E Hi�1

and Hi�1

/Hi ⇡ GalLi�1(Li) is cyclic,
hence

1 = Hk EHk�1

· · ·Hi EHi�1

· · ·H
0

EG

is an abelian series for G, and G is solvable. Now consider the tower L/K/F .
Once again, using the FTGT, Theorem 7.4.10.4, we get that GalF (K) is a
quotient of G = GalF (L). By Theorem 7.7.3, GalF (K) is solvable.

The converse of Theorem 7.8.1 is also true, but we will not prove it here.

Corollary 7.8.4 There is no general solution by radicals for the quintic equa-

tion.

Proof. It su�ce to show one quintic polynomial that is not solvable by radi-
cals. The polynomial x5 � 20x+ 6 2 Q[x] from Example 7.4.3.4, has Galois
group isomorphic to S

5

. S
5

is not solvable since it has a non-solvable sub-
group, namely A

5

. Therefore x5�20x+6 = 0 is not solvable by radicals.

Exercise 7.8.2. Let f(x) 2 Q[x] be an irreducible polynomial of degree 5,
which has only one real root. show that the Galois group of f(x) contains a
subgroup isomorphic to D

5

.
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