
Chapter 4

Factorization

01/22/19

Throughout this chapter, R stands for a commutative ring with unity,
and D stands for an integral domain, unless indicated otherwise.

The most important theorem in this course, after the Fundamental The-
orem of Galois Theory, can be briefly stated as follows.

Theorem 4.0.1 Field )ED )PID )UFD )ID

In other words, every field is an Euclidean Domain; every Euclidean Do-
main is a Principal Ideal Domain; every Principal Ideal Domain is a Unique
Factorization Domain; and every Unique Factorization Domain is an Inte-
gral Domain. So far, we only have the definition for the first, third, and last
of these expressions. In the following sections we will give the appropriate
definitions of the other terms, prove each of the implications, and show, by
counterexample, that all implications are strict. See Propositions 4.1.2, 4.2.1,
4.4.3, as well as Examples 4.1.1.2, 4.4.1.2, 4.4.2 and Exercise 4.6.1.
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12 CHAPTER 4. FACTORIZATION

4.1 Euclidean Domain

Theorem 4.1.1 [Gallian 16.2] let F be a field, and F [x] the ring of poly-

nomials with coe�cients in F . For any f(x), g(x) 2 F [x] with g(x) 6= 0,
there are unique q(x), r(x) 2 F [x] such that

f(x) = q(x)g(x) + r(x) and r(x) = 0or deg(r(x)) < deg(g(x).

Proof.

Definition 4.1.1. An Euclidean Domain consists of an integral domain D
and a function � : D � {0} ! N, satisfying the following conditions:
For any f, g 2 D with g 6= 0, there exist q, r 2 D s.t.

f = gq + r and, either r = 0, or �(r) < �(g). (4.1)

Notes 4.1.1.

The function � is referred to as division function, or measure, or degree.

Some authors require the function � to satisfy �(a)  �(ab) for all a, b 2
D�{0}. However, it can be shown that this extra requirement is superfluous.

The q and r are not required to be unique. In fact, in some EDs they are
not unique, as we will see below in Example ??.

Examples 4.1.1. 1. Z with �(n) = |n|.

2. Theorem 4.1.1 above shows that for a field F , the ring F [x] of polyno-
mials over F with �(f) = deg(f) forms an Euclidean Domain.

Proposition 4.1.2 If F is a field, then it is an Euclidean Domain, with

�(a) = 1 for all a 6= 0.

Note that the function � is never used here, since the residue is always 0.
In other words, a field has exact division.

We get the following corollaries from Theorem 4.1.1.
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multiplicityCorollary 4.1.3 Let F be a field, a 2 F , and f(x) 2 F [x]. Then f(a) is the
remainder in the division of f(x) by x� a.

Corollary 4.1.4 Let F be a field, a 2 F , and f(x) 2 F [x]. Then a is a root

or a zero of f(x) i↵ x� a is a factor of f(x).

Definition 4.1.2. Let F be a field, a 2 F , f(x) 2 F [x], and m 2 N
0

. We
say that a is a root of f(x) of multiplicity m, if there is g(x) 2 F [x] such that
f(x) = (x� a)mg(x), and (x� a) is not a factor of g(x). In other words, the
multiplicity of a as a root of f(x) is the largest m 2 N

0

such that (x� a)m is
a factor of f(x). To say that a is a root of multiplicity 0, simply means that
a is NOT a root.

Theorem 4.1.5 [Gallian 16.3] A polynomial of degree n over a field F has

at most n zeros, counting multiplicity.

01/23/19

Proposition 4.1.6 The ring of Gaussian integers

Z[i] = {m+ ni 2 C|m,n 2 Z}

with �(m+ ni) = m2 + n2 = N(m+ ni), is an Euclidean Domain.

Proof.

4.2 Principal Ideal Domain

Definition 4.2.1. A Principal Ideal Domain (PID) is an integral domain in
which every ideal is principal, i.e. generated by a single element.

Example 4.2.1. Z is an PID.

We get more examples of PIDs from the following proposition.

Proposition 4.2.1 [Gallian 18.4] If D is an Euclidean Domain, then it is

a PID. Moreover, every non-zero ideal I is generated by a non-zero element

of I with smallest � value.

Version 2019.5.9
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Proof. Let I ED. If I = {0} then I = h0i.
Assume I 6= {0}. Let 0 6= a 2 I, such that �(a) is smallest among non-zero
elements of I.
Claim: I = hai. Clearly hai ✓ I. Let b 2 I. Since D is an ED there exist
q, r 2 D such that

b = aq + r and, either r = 0, or �(r) < �(a).

Since a, b 2 I, we that r = b � aq 2 I. Minimality of �(a) force r = 0, so
b = aq 2 hai.

We get from this proposition and Examples 4.1.1 that in addition to Z,
the ring Z[i] of Gaussian integers is a PID, and for any field F , the ring F [x]
of polynomials over F is also a PID.

Corollary 4.2.2
R[x]/hx2 + 1i ⇡ C

Proof. Consider the evaluation map

evi : R[x] ! C
f(x) 7! f(i)

It is an epimorphism, and its kernel is generated by a non-zero element of
lowest degree. Clearly evi(x2 + 1) = 0, and the kernel has no elements of
degree 1. Now apply the first isomorphism theorem.

Definition 4.2.2. Let a, b 2 D. We say that a divides b if there is c 2 D
such that b = ac, i.e. b 2 hai. We may also say that a is a divisor of b, or
that b is a multiple of a.

Lemma 4.2.3 Let a, b, b
1

, b
2

, c, r 2 R.

1. a|a

2. a|0

3. 1|a

4. a|b and b|c ) a|c
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5. a|b
1

, a|b
2

) a|(b
1

+ b
2

)

6. a|b ) a|rb

7. {b 2 R | a|b} is an ideal of R. In fact, it is non other than hai.

01/25/19

Definition 4.2.3. a, b are said to be associates in D if a|b and b|a. We write
a ⇠ b.

Note 4.2.1. Note that the binary relation “is associate of” is an equivalence
relation. We’ll use the expression “up to associates” to refer to elements in
the same equivalence class. For example, in Lemma 4.4.7 we will prove that
greatest common divisors are unique, up to associates.

Lemma 4.2.4 Let a 2 R.

1. a ⇠ 0 i↵ a = 0.

2. a ⇠ 1 i↵ a is a unit.

Proposition 4.2.5 Let a, b 2 D. TFAE:

1. a, b are associates in D

2. there is a unit u 2 D⇤
such that a = ub

3. hai = hbi

Proof. (1) )(2) )(3) )(1)

4.3 Irreducible and Prime Elements

Recall that for p 2 Z, not zero, not ±1, TFAE:

1. p = ab ) a = ±1 or b = ±1.

Version 2019.5.9
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irreducible

prime

2. p|ab ) p|a or p|b, i.e. ab 2 hpi ) a 2 hpi or b 2 hpi.

We extend these two ideas to an arbitrary ID D. In general they are not
equivalent, like they are in Z. We have an example of that in Examples 4.3.1
below.

Definition 4.3.1. Let p 2 D be a non-zero non-unit element (nznu for
short).

1. We say p is irreducible if

p = ab ) a is a unit, or b is a unit.

2. We say p is prime if

p|ab ) p|a or p|b, i.e. ab 2 hpi ) a 2 hpi or b 2 hpi.

Notes 4.3.1. 1. Note that the condition for irreducible is equivalent to

p = ab ) p ⇠ a or p ⇠ b.

2. The condition “p is prime” is equivalent to “hpi is a prime ideal”.

3. When checking that p is a prime, it su�ces to consider the case when
a and b are nznu. Otherwise, the condition is trivially satisfied.

Exercise 4.3.1. Show that the properties of being irreducible or being prime
are shared by associates. Given a, b 2 D, such that a ⇠ b, then

1. a is irreducible i↵ b is irreducible.

2. a is prime i↵ b is prime.

Proposition 4.3.1 [Gallian 18.1, 18.2] Let p 2 D be nznu.

1. If p is prime then p is irreducible.

2. Assume D is a PID. If p is irreducible then p is prime.
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Proof. 1. Assume p is prime. WTS p is irreducible. Suppose p = ab.
Then p|ab and by primality p|a or p|b. WLOG p|a, so a = pc for some
c 2 D, and p = ab = pcb. Since D is an ID, and p 6= 0 we get 1 = cb,
so b is a unit.

2. Assume now that D is a PID and p is irreducible. WTS p is prime.
Suppose p|ab, where a, b 2 D. Let

I = {xa+ yp|x, y 2 D} = hai+ hpiED

Since D is a PID, there is d 2 D such that I = hdi. Now we have p 2 I
so there is z 2 D such that p = zd. Since p is irreducible, either d is
a unit or p ⇠ d. If d is a unit then I = D, and 1 2 D, so there are
x, y 2 D such that 1 = xa+ yp. We get b = xab+ ypb, and since p|ab,
we get p|b. On the other hand, if p ⇠ d then hpi = hdi = I, and since
a 2 I we get p|a.

Examples 4.3.1. 1. The norm function, N(z), defined as the square of
the absolute value for any z 2 C, is a multiplicative function, i.e.
N(zw) = N(z)N(w). In the domain of Gaussian integers, Z[i], the
norm function takes non-negative integer values. It follows that the
only units of Z[i] are ±1,±i, i.e. the elements with norm 1.
Now, since N(1 + i) = 2, it follows that 1 + i is irreducible. Since Z[i]01/28/19

is PID, 1 + i is also prime.

2. Consider now the subring of C,

Z
⇥p

�5
⇤
=
�
a+ b

p
�5 | a, b 2 Z

 
.

Clearly, it is an ID since it is a subring of an ID. The norm is given by
N(a+ b

p
�5) = a2+5b2, and it takes non-negative integer values. The

units are ±1, the only elements with norm 1. The elements 1±
p
�5 2

Z[
p
�5] have norm N(1 +

p
�5) = N(1 �

p
�5) = 6. Since there are

no elements in Z[
p
�5] with norm equal to 2 or 3, it follows that the

elements 1 ±
p
�5 are irreducible. However, 1 +

p
�5 is not a prime

since (1 +
p
�5)(1 �

p
�5) = 6 = 2 · 3 but N(2) = 4, N(3) = 9, and

therefore 1+
p
�5 cannot divide either 2 or 3. From Proposition 4.3.1.2,

we conclude that Z[
p
�5] is not a PID. A similar argument shows that

2 and 3 are irreducible but not prime in Z[
p
�5]. It also shows that

Z[
p
�5] is not a UFD. See Definition 4.4.1 below.

Version 2019.5.9
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Unique

Factorization

Domain

Recall that for a field F , the ring of polynomials F [x] is a PID. Hence,
irreducible and prime are equivalent. Deciding whether a polynomial is irre-
ducible or not, is not always an easy task. The following is the first of several
irreducibility criteria we will use for that purpose.

Proposition 4.3.2 [Irreducibility Criterion in F [x], Gallian 17.1] Let
F be a field.

1 Every linear polynomial in F [x] is irreducible.

2 For f 2 F [x], with deg(f) > 1, if f has a root in F then it is reducible

in F [x].

3 For f 2 F [x], with deg(f) = 2 or 3, f is reducible in F [x] i↵ it has a

root in F .

Proof. This follows immediately from the definition of irreducible and Corol-
lary 4.1.4.

The result of this proposition does not extend beyond degree 3.

Example 4.3.2. The polynomial x4 +5x2 +6 2 Q[x] is reducible, yet it has
no root in Q. It factors as x4 + 5x2 + 6 = (x2 + 2)(x2 + 3).

4.4 Unique Factorization Domain

Definition 4.4.1. An integral domain D is called a Unique Factorization Do-

main (UFD), if every nznu a 2 D can be factored as a product of irreducible
elements, in a unique way up to order and associates. The uniqueness means
that if

a = p
1

· · · pr = q
1

· · · qs,

with all the pis and qjs irreducible, then r = s, and, after some possible
reordering, we get pi ⇠ qi for i = 1, . . . , r.

By definition, every UFD is an integral domain, so we get for free the
implication UFD )ID in Theorem 4.0.1.
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Ascending Chain

Condition

Noetherian

To show that an integral domain D is a UFD, we usually break the
argument into two parts. For any nznu a 2 D,

Existence: there exists a factorization of a into irreducible factors;

Uniqueness: two such factorizations have the same number of factors, and
di↵er only on the order of the factors, and up to associates.

That is what we will do in the proof of Proposition 4.4.3 below.

Examples 4.4.1. 1. Since Z is a PID, primes and irreducible elements
are the same. The Fundamental Theorem of Arithmetic tells us that
Z is a UFD.

2. Example 4.3.1.2 above shows that in R = Z[
p
�5]

6 = 2 · 3 = (1 +
p
�5)(1�

p
�5)

The four factors have norms 4, 9, 6 and 6, respectively. Therefore,
they are irreducible in Z[

p
�5]. Since the units of R have norm 1,

associate elements in R must have the same norm. Therefore, the two
factorizations of 6 are not the same up to associates. In conclusion,
Z[
p
�5] is not a UFD. This shows that the implication UFD )ID in

Theorem 4.0.1 is strict.

3. We will show in Proposition 4.4.3 below, that every PID is a UFD. It
follows that for any field F , the ring F [x] is a UFD.

Definition 4.4.2. We say that a ring R satisfies the Ascending Chain Condi-

tion (ACC), if every ascending chain of ideals

I
1

 I
2

 · · ·

has to become constant after a finite number of steps. That is, there is n � 1,
such that In = In+1

= · · · . A ring that satisfies the ACC is called Noetherian.

Proposition 4.4.1 Every PID satisfies the ACC, i.e. it is Noetherian.

Version 2019.5.9
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Proof. Let D be a PID, and let I
1

 I
2

 · · · be an ascending chain of ideals

of D. Let A =
1[

i=1

Ii.

We first claim that A is an ideal of D. Given a, b 2 A, there are i, j 2 N
such that a 2 Ii, and b 2 Ij. WLOG we may assume j  i. Since the ideals
satisfy Ij  Ii, we have a, b 2 Ii, and Ii being an ideal, yields a + b 2 Ii, so
a+ b 2 A. For r 2 D, we have ra 2 Ii, so ra 2 A.
Since D is a PID, there is a 2 A such that A = hai. But then there is i 2 N
such that a 2 Ii, and therefore

hai  Ii  A = hai,

which yields Ii = A. For any k � i, we have

Ii  Ik  A = Ii,

so Ik = Ii.

01/29/19

Lemma 4.4.2 Let D be an integral domain, a, b, c, u, v, p, q, a
1

, . . . , an 2 D.

1. uv is a unit i↵ u and v are units.

2. If p is a prime, and p|a
1

· · · an then p|ai for some i = 1, . . . , n.

3. If p is irreducible, q is nznu, and q|p then p ⇠ q.

4. If a is nznu, a = bc and a ⇠ b then c is a unit.

Proposition 4.4.3 Let D be an integral domain satisfying:

1. ACC, i.e D is Noetherian,

2. Every irreducible in prime.

Then D is a UFD.
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Proof. Let a 2 D be a nznu. We want to show that a has a factorization
into irreducible factors, unique up to order and associates.
Existence: We first prove the following
Claim: Any nznu a has at least one irreducible factor. If a is irreducible,
we are done. Otherwise, it can be factored as a = b

1

c
1

with b
1

, c
1

nznu. If b
1

is irreducible, we are done. Otherwise, note that hai � hb
1

i since c
1

is not a
unit, and b

1

can be factored as b
1

= b
2

c
2

with b
2

, c
2

nznu. If b
2

is irreducible,
we are done. Otherwise, note that hb

1

i � hb
2

i since c
2

is not a unit, and b
2

can be factored as b
2

= b
3

c
3

with b
3

, c
3

nznu. This process has to stop, for
otherwise we would have an infinite strictly ascending chain of ideals

hai � hb
1

i � hb
2

i � · · ·

contradicting the ACC assumption.
Now we use the claim above to prove that any nznu a is a product of irre-
ducible factors. If a is irreducible, we are done. Otherwise, write a = p

1

d
1

where p
1

is irreducible and d
1

a nznu. Note that hai � hd
1

i. If d
1

is irre-
ducible, we are done. Otherwise, write d

1

= p
2

d
2

where p
2

is irreducible and
d
2

a nznu. Note that a = p
1

p
2

d
2

, and hd
1

i � hd
2

i. If d
2

is irreducible, we are
done. Otherwise, write d

2

= p
3

d
3

where p
3

is irreducible and d
3

a nznu. Note
that a = p

1

p
2

p
3

d
3

, and hd
2

i � hd
2

i. This process has to stop for otherwise
we would have an infinite strictly ascending chain of ideals

hai � hd
1

i � hd
2

i � · · ·

Uniqueness: Suppose a = p
1

p
2

· · · pr = q
1

q
2

· · · qs, with pi, qj irreducible,
and prime by the second assumption. WLOG consider r  s, and proceed
by induction on r.
Base case (r = 1) We have a = p

1

= q
1

q
2

· · · qs. By Lemma 4.4.2, p
1

⇠ q
1

,
and if we had s > 1 the product q

2

· · · qs would be a unit, contradicting the
assumption that all qj’s are irreducible. Hence s = 1.
Inductive step From a = p

1

p
2

· · · pr = q
1

q
2

· · · qs, and Lemma 4.4.2.2 we
have p

1

|qj for some 1  j  s. Switch qj with q
1

to have p
1

|q
1

, and by
Lemma 4.4.2.3, we get p

1

⇠ q
1

. There is a unit u 2 D such that q
1

= p
1

u.

p
1

p
2

p
3

· · · pr = p
1

uq
2

q
3

· · · qs.

Note that uq
2

⇠ q
2

, so, replacing q
2

with uq
2

, and using the cancellation
property of D we obtain

p
2

p
3

· · · pr = q
2

q
3

· · · qs.

Version 2019.5.9
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By inductive hypothesis r = s and, after some possible reordering, pi ⇠ qi
for i = 2, . . . , r.

From this proposition, together with Propositions 4.4.1 and 4.3.1.2, we
get the following corollary.

Corollary 4.4.4 [Gallian 18.3] Every PID is a UFD.

This is the last implication needed to complete the proof of Theorem 4.0.1.
The following example shows that this implication is strict.

Example 4.4.2. Z[x] is not a PID. It follows from Theorem 4.4.5 below,
that it is a UFD. Let

I = {f(x) 2 Z[x]| constant term is even}.

It is easy to see that I is an ideal of Z[x], but there is no polynomial f 2 Z[x]
that generates I. A non-constant f would not have the constant 2 as a
multiple in Z[x]. A constant f would have to be even to be in I, and would
not have x as a multiple in Z[x].

We have already seen that when D is an integral domain, the ring D[x] of
polynomials over D is also an integral domain. One may ask what properties
of D survive when we move to the larger ring D[x]. We have seen (see
Example 4.1.1.2) that when F is a field, F [x] even though it is not a field, it
is an Euclidean Domain. Example 4.4.2 above shows that the properties ED
and PID do not survive in general. We will prove that the property of UFD
does survive.

Theorem 4.4.5 [Gallian 18.5] If D is a UFD, then the ring D[x] of poly-
nomials over D is a UFD.

Based on this theorem, and the fact that Z is an Euclidean Domain, but
Z[x] is not a PID, the best we can say for the polynomial ring of an integral
domain is summarized in the following table.
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greatest common

divisor

D D[x]
ID ID

UFD UFD
PID UFD
ED UFD
Field ED

Corollary 4.4.6 If D is a UFD then the ring D[x
1

, . . . , xn] of polynomials

in several variables over D is a UFD.

We will need several lemmas and propositions before we can prove Theorem 4.4.5.

Definition 4.4.3. Let a, b, d 2 D. We say that d is a greatest common

divisor of a and b provided:

• d is a common divisor, i.e.

d|a and d|b,

• if d0 is a common divisor of a and b then d0|d, i.e.

d0|a and d0|b ) d0|d.

Lemma 4.4.7 Greatest common divisor of a and b is unique, up to asso-

ciates, when it exists.

We will denote by g.c.d.(a, b) “the” greatest common divisor of a and b
when it exists, understanding that it is well-defined up to associates.

01/30/19

Lemma 4.4.8 Let D be an ID, a, b, u 2 D.

1. g.c.d.(a, b) ⇠ g.c.d.(b, a), whenever one of them exists,

2. g.c.d.(a, 0) ⇠ a,

3. if u is a unit g.c.d.(a, u) ⇠ 1,

4. if a|b then g.c.d.(a, b) ⇠ a.

Version 2019.5.9
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In general, g.c.d.(a, b) does not have to exist. We will show that in a UFD
it does always exist. Because of Lemma 4.4.8 we only need to consider the
case when a and b are nznu.

Example 4.4.3. Consider the ring R = Z
⇥p

�5
⇤
from Example 4.3.1.2.

Note that

(1 +
p
�5)(1�

p
�5) = 6 = 2 · 3

(1 +
p
�5)(1 + 2

p
�5) = �9 + 3

p
�5 = 3(�3 +

p
�5)

We claim that 6 and �9+3
p
�5 do not have a g.c.d. in R. Suppose otherwise,

and let d ⇠ g.c.d.(6,�9 + 3
p
�5). Since 3 and 1 +

p
�5) are both common

divisors of 6 and �9 + 3
p
�5, we must have 3|d and 1 +

p
�5)|d. The norm

is a multiplicative function R taking integer values. Therefore, we must have
N(3)|N(d) and N(1+

p
�5)|N(d) in Z. This means 9|N(d) and 6|N(d), and

18|N(d). On the other hand, we have d|6 and d| � 9 + 3
p
�5, so N(d)|36

and N(d)|126. This yields N(d)|18, and since N(d) is a non-negative integer,
we must have N(d) = 18. But the equation a2 + 5b2 = 18 has no integer
solutions.

Lemma 4.4.9 Let D be an ID, a, b, c 2 D. We have

g.c.d.(a, g.c.d.(b, c)) ⇠ g.c.d.(g.c.d.(a, b), c) whenever one side exists.

Lemmas 4.4.9 and 4.4.8.1 tell us that g.c.d., as a binary operation when
defined, is associative and commutative, up to associates. Therefore, the
expression g.c.d.{a

1

, . . . , an} is well-defined, up to associates.

Lemma 4.4.10.1 gives us a converse to Proposition 4.3.1.1 for UFDs.
Proposition 4.3.1.1 already gave us the converse for PIDs. This converse
is not true for IDs in general, as Example 4.3.1.2 shows.

Lemma 4.4.10 Let D be a UFD, a, p 2 D, nznu.

1. If p is irreducible, then it is prime.

2. There are finitely many (up to associates) irreducible divisors of a.

Proof. (1) Assume p 2 D is irreducible and let b, c 2 D be nznu such that
p|bc. There is d 2 D such that pd = bc. Write each b, c, d as a product of
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irreducibles,
b = p

1

· · · pj
c = q

1

· · · qk
d = r

1

· · · rl
so we have pr

1

· · · rl = p
1

· · · pjq1 · · · qk. By uniqueness of the factorization,
we must have either p ⇠ pi for some 1  i  j or p ⇠ qi for some 1  i  k.
It then follows that either p|a or p|b. So, p is prime.
(2) Write a as a product of irreducibles a = p

1

· · · pj. If p is an irreducible that
divides a, by Part(4.4.10.1), p|pi for some 1  i  j. Since pi is irreducible
and p is a nznu, by Lemma 4.4.2.3 we get p ⇠ pi. Therefore, up to associates,
the only irreducible factors of a are p

1

, . . . , pj.

Proposition 4.4.11 Let D be a UFD, a, b 2 D nznu.

Let p
1

, . . . , pr be the list, without repetitions, of all irreducible factors of either
a or b, up to associates. Write

a = p↵1
1

· · · p↵r
r , ↵i � 0,

b = p�1
1

· · · p�r
r , �i � 0.

Then a and b have a greatest common divisor, given by

g.c.d.(a, b) = p�1
1

· · · p�rr , where �i = min{↵i, �i}

Proof. Let d = p�1
1

· · · p�rr . Since �i  ↵i, we have ↵i � �i � 0, so

a = dp↵1��1
1

· · · p↵r��r
r

and d|a. Similarly, d|b, so d is a common divisor of a and b. If d0 is also a
common divisor of a and b, then every irreducible factor of d0 divides a, and,
up to associates, it has to be one of p

1

, . . . , pr. Therefore, we write d0 as a
product irreducibles, it must take the form d0 = p�1

1

· · · p�rr with �i � 0. Since
d0 divides a, there is e 2 D such that a = d0e. Now, e|a, so the same argument
used with d0, shows that the factorization of e into irreducible factors must
have the form e = pµ1

1

· · · pµr
r with µi � 0. Now we have

a = p↵1
1

· · · p↵r
r = d0e = p�1+µ1

1

· · · p�r+µr
r

Since p
1

, . . . , pr are pairwise non-associates, the uniqueness of factorization
forces ↵i = �i + µi, so �i  ↵i. A similar argument shows that �i  �i, so
�i  min{↵i, �i} = �i. Therefore, d = p�1

1

· · · p�rr = d0p�1��1
1

· · · p�r��r
r , and

d0|d.
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least common

multiple

Corollary 4.4.12 In any PID and in any ED the operation g.c.d. is well-

defined, up to associates.

Note that Proposition 4.4.11 gives us a procedure to find the g.c.d. of two
elements in a UFD. The following exercise shows alternative ways to find the
g.c.d. of two elements in a PID, and in an ED.

Exercise 4.4.1. 1. Let D be a PID, a, b 2 D. Let d be a generator of
the ideal hai+ hbi. Show that d ⇠ g.c.d.(a, b).

2. Let D be an ED, a, b 2 D, with b 6= 0. Consider the sequence
r
0

, r
1

, r
2

, . . . , rn defined recursively as follows: r
0

= a, r
1

= b, and using
Property 4.1 of an Euclidean Domain, until obtaining a residue 0,

r
0

= q
1

r
1

+ r
2

and �(r
2

) < �(r
1

),
r
1

= q
2

r
2

+ r
3

and �(r
3

) < �(r
2

),
...

rn�3

= qn�2

rn�2

+ rn�1

and �(rn�1

) < �(rn�2

),
rn�2

= qn�1

rn�1

+ rn and rn = 0.

Why does the sequence r
1

, r
2

, . . . , rn have to eventually attain the value
rn = 0? Prove that the last non-zero entry in the residues list, i.e.
rn�1

⇠ g.c.d.(a, b).

02/01/19

Corollary 4.4.13 Let a, b, c 2 D. g.c.d.(ac, bc) ⇠ c · g.c.d.(a, b).

Definition 4.4.4. Let a, b,m 2 D. We say that m is a least common multi-

ple of a and b provided:

• m is a common multiple, i.e.

a|m and b|m,

• if m0 is a common multiple of a and b then m|m0, i.e.

a|m0 and b|m0 ) m|m0.
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Note that the “least common multiple” of a and b is unique, up to asso-
ciates, when it exists. We denote it by l.c.m.(a, b), understanding that it is
well-defined up to associates.

Lemma 4.4.14 Let D be an ID, a, b, u 2 D.

1. l.c.m.(a, b) ⇠ l.c.m.(b, a), whenever one of them exists,

2. l.c.m.(a, 0) ⇠ 0,

3. if u is a unit l.c.m.(a, u) ⇠ a,

4. if a|b then l.c.m.(a, b) ⇠ b.

In general, l.c.m.(a, b) does not have to exist. We will show that in a UFD
it does always exist. Because of Lemma 4.4.14 we only need to consider the
case when a and b are nznu.

Lemma 4.4.15 Let D be an ID, a, b, c 2 D. We have

l.c.m.(a, l.c.m.(b, c)) ⇠ l.c.m.(l.c.m.(a, b), c) whenever one side exists.

Lemmas 4.4.15 and 4.4.14.1 tell us that l.c.m., as a binary operation
when defined, is associative and commutative, up to associates. Therefore,
the expression l.c.m.{a

1

, . . . , an} is well-defined, up to associates.

Exercise 4.4.2. 1. Let D be an UFD, a, b 2 D. Prove that a and b have
a least common multiple, and

g.c.d.(a, b) · l.c.m.(a, b) = a · b,

so that when at least one of a and b is non-zero, then

l.c.m.(a, b) =
a · b

g.c.d.(a, b)
.

2. Let D be an ID, a, b 2 D. Prove that if a and b have a least common

multiple l in D, then
ab

l
is a greatest common divisor of a and b.
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content

primitive

4.5 Factorization in D[x]

Recall that for any ring R, R is a subring of the ring of polynomials R[x],
consisting of all constant polynomials. When D is an ID, the units of D[x]
are all constant, and precisely the units of D.

Example 4.5.1. The previous statement about units, requires D to be an
ID. In Z

4

[x], the polynomial 1 + 2x is a non-constant unit, as (1 + 2x)2 = 1.

Definition 4.5.1. Let D be a UFD, 0 6= f 2 D[x] with

f(x) = a
0

+ a
1

x+ · · ·+ anx
n.

The content of f(x), denoted c(f(x)), is defined as g.c.d.{a
0

, . . . , an}. We’ll
often write c(f) instead of c(f(x)). Note that c(f) is well-defined, up to
associates. We say that f(x) is primitive if c(f) ⇠ 1.

Example 4.5.2. If we take f(x) = 3x2�12x+9 2 Z[x] then c(f) ⇠ 3. Note
that f(x) = 3(x2 � 4x+ 3) and the second factor is primitive. This holds in
general.

Lemma 4.5.1 Let D be a UFD, 0 6= f(x), g(x) 2 D[x], 0 6= a 2 D.

1. c(af(x)) ⇠ a · c(f(x)).

2. There is a primitive

bf(x) 2 D[x] such that f(x) = c(f) · bf(x). This

primitive is unique, up to associates, and deg( bf(x)) = deg(f(x)).

3. If f(x) = ag(x) with g(x) primitive, then c(f) ⇠ a.

Proposition 4.5.2 [Gauss’ Lemma] Let D be a UFD, 0 6= f(x), g(x) 2
D[x]. If f(x) and g(x) are primitive, then f(x)g(x) is primitive.

Proof. (By contradiction) Assume f(x) and g(x) are primitive, and f(x)g(x)
is not primitive. Write

f(x) = a
0

+ a
1

x+ · · ·+ anxn

g(x) = b
0

+ b
1

x+ · · ·+ bmxm

f(x)g(x) = c
0

+ c
1

x+ · · ·+ cn+mxn+m
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so that ck =
kX

i=0

aibk�i. Since f(x)g(x) is not primitive, d = c(f(x)g(x)) =

g.c.d.{c
0

, . . . , cn+m} is not a unit, and there is p 2 D irreducible such that
p|d. If follows that p|ck for every k = 0, . . . , n+m. On the other hand, since
f(x) and g(x) are primitive, there are aj and bl such that p 6 |aj and p 6 |bl.
Choose j and l smallest, so that p|a

0

, . . . , aj�1

, b
0

, bl � 1. Then, since

cj+l =
j+lX

i=0

aibj+l�i =

 
j�lX

i=0

aibj+l�i

!
+ ajbl +

 
j+lX

i=j+1

aibj+l�i

!

we get that p divides ajbl. Since p is prime, this forces p|aj or p|bl, a contra-
diction.

Corollary 4.5.3 Let D be a UFD, 0 6= f(x), g(x) 2 D[x].

c(fg) ⇠ c(f) · c(g).

Proof. Let bf(x), bg(x) 2 D be primitive such that f(x) = c(f) bf(x) and g =
c(g)bg(x). Then f(x)g(x) = c(f)c(g) bf(x)bg(x). By Gauss’s lemma bf(x)bg(x) is
primitive, so by Lemma 4.5.1 we get c(fg) ⇠ c(f) · c(g), as desired.

The converse of Gauss’ lemma follows from this corollary and Lemma 4.4.2.

02/04/19

Corollary 4.5.4 Let D be a UFD, 0 6= f(x), g(x) 2 D[x]. f(x)g(x) is

primitive i↵ f(x) and g(x) are primitive.

Lemma 4.5.5 Let D be a UFD, f(x) 2 D[x] with deg(f(x)) � 1. If f(x) is
irreducible then it is primitive.

Proof. Let bf(x) 2 D[x] be primitive such that f(x) = c(f) · bf(x). Since f(x)
is irreducible, one of c(f) and ˆf(x) is a unit. But deg( bf(x)) = deg(f(x)) � 1,
so bf(x) is not a unit, so c(f) is a unit, i.e. c(f) ⇠ 1, and f(x) is primitive.

Recall that when R is a subring of S, the polynomial ring R[x] is a
subring of S[x]. The next proposition relates three rings, a UFD D, its ring
of polynomials D[x], and the ring of polynomials of its field of quotients. It
connects the concept of irreducible in these three rings.
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Proposition 4.5.6 Let D be a UFD, and Q its field of fractions. Let p 2 D
and f(x) 2 D[x] with deg(f(x)) � 1, and g(x) 2 Q[x].

1. p is irreducible in D i↵ it is irreducible in D[x].

2. There are a, b 2 D and a primitive bg(x) 2 D[x] such that g(x) =
a

b
bg(x).

3. If f(x) is irreducible in D[x] then it is irreducible in Q[x].

4. If f(x) is primitive and irreducible in Q[x], then it is irreducible in

D[x].

Proof. (1) Since p 2 D has degree 0, the only way to write p as a product of
two polynomials is by both factors being constant. Since D and D[x] have
the same units, the result follows at once.
(2) Note first that the coe�cients of any g(x) 2 Q[x] are fractions of ele-
ments of D. Each of those fractions can be taken to be “reduced”, meaning
that the g.c.d. of numerator and denominator is a unit. If we let b be the
l.c.m. of the denominators of the coe�cients of g(x), then bg(x) 2 D[x]. Let
a = c(bg(x)), and bg(x) 2 D[x] primitive, such that bg(x) = abg(x). Thus, we

have g(x) =
a

b
bg(x)

(3) By contradiction. Assume f(x) is irreducible inD[x] but reducible in Q[x]
and write f(x) = g(x)h(x) with g(x), h(x) 2 Q[x] nznu, i.e. non-constant.

Let a, b, c, d 2 D and bg(x),bh(x) 2 D[x] primitive such that g(x) =
a

b
bg(x)

and h(x) =
c

d
bh(x). We get f(x) =

ac

bd
bg(x)bh(x), i.e. bd f(x) = ac bg(x)bh(x).

By Gauss’s Lemma bg(x)bh(x) is primitive. By Lemma 4.5.5, f(x) is primitive.

Taking content of both sides, we get ac ⇠ bd, and u =
ac

bd
2 D is a unit. We

have f(x) = u bg(x)bh(x), and bg(x), bh(x) are non-constant. This contradicts
the irreducibility of f(x) in D[x].
(4) Suppose f(x) = g(x)h(x) with g(x), h(x) 2 D[x], nznu. By Corol-
lary 4.5.4, g(x) and h(x) are primitive, but being non-units, they must be
non-constant, contradicting the irreducibility of f(x) in Q[x].
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Note 4.5.1. Note that the condition in Proposition 4.5.6.4 of f(x) being
primitive is necessary. For example, the polynomial f(x) = 2x + 2 is irre-
ducible in Q[x], but it is not irreducible in Z[x].

Scholium 4.5.7 If f(x) is reducible in Q[x], then it factors as a product of

non-constant polynomials of lower degree in D[x].

Using Proposition 4.5.6.3 we obtain another corollary to Gauss Lemma.

Corollary 4.5.8 Let D be a UFD, and Q its field of quotients. Let f(x) 2
D[x] and g(x) 2 Q[x]. If f(x) is primitive and f(x)g(x) 2 D[x], then g(x) 2
D[x].

Proof. Let a, b 2 D and bg(x) 2 D[x] primitive, such that g(x) =
a

b
bg(x). Let

h(x) = f(x)g(x). Then bh(x) = af(x)bg(x) in D[x]. By Corollary 4.5.3 and
the fact that both f(x) and bg(x) are primitive, we get

b · c(h(x)) ⇠ a,

so b | a and
a

b
2 D.

We can combine Lemma 4.5.5 with Proposition 4.5.6.3,4 and obtain the
following proposition.

Proposition 4.5.9 Let D be a UFD, Q its field of fractions, and f(x) 2 D[x]
non-constant polynomial. f(x) is irreducible in D[x] i↵ it is primitive and

irreducible in Q[x].

We now have all the ingredients needed to prove Theorem 4.4.5.

Theorem 4.5.5 f D is a UFD, then the ring D[x] of polynomials over D is

a UFD.

Proof. Let f(x) 2 D[x] be nznu. We want to show that f(x) can be factored
as a product of irreducibles in a unique way, up to order and associates.
Existence: By induction on deg(f(x)).
Base case. If deg(f(x)) = 0, then f(x) is a constant polynomial, f(x) =
a 2 D. Since D is a UFD, we can factor a as a product of irreducibles in D.
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By Proposition 4.5.6.1, all these irreducibles in D are irreducible in D[x]
Inductive step. If deg(f(x) > 1, write f(x) = c(f) bf(x) with bf(x)
primitive. Write c(f) as a product of irreducibles in D, which are also
irreducible in D[x]. Now, if bf(x) is irreducible, we are done. Otherwise,
write bf(x) = g(x)h(x) with g(x), h(x) 2 D[x] nznu. By Corollary 4.5.4
g(x) and h(x) are primitive, so neither one is a constant, and therefore
deg(g(x)), deg(h(x)) < deg(f(x)), and by induction hypothesis, each of g(x)
and h(x) can be factored as a product of irreducibles.
Uniqueness: Assume f(x) = p

1

(x) · · · pr(x) = q
1

(x) · · · qs(x) with each 02/05/19

pi(x) and each qj(x) irreducible in D[x]. Rearrange, if needed, so that

p
1

(x), . . . , pk(x) are non-constant and pk+1

, . . . , pr are constant
q
1

(x), . . . , ql(x) are non-constant and ql+1

, . . . , qs are constant

By Lemma 4.5.5 and 4.5.2, p
1

(x) · · · pk(x) and q
1

(x) · · · ql(x) are primitive,
and therefore by Lemma 4.5.1.3, we get c(f) ⇠ pk+1

· · · pr ⇠ ql+1

. . . qs. We
can replace some pi with an associate and some qj with an associate, such that
pk+1

· · · pr = ql+1

. . . qs 2 D, so p
1

(x) · · · pk(x) = q
1

(x) · · · ql(x) 2 D[x]. By
Proposition 4.5.6.3 we have p

1

(x), . . . , pk(x), q1(x), . . . , ql(x) are irreducible in
Q[x], where Q is the field of fractions of D. But we know that Q[x] is a UFD,
so we must have k = l and after some possible rearrangements pi(x) ⇠ qi(x)
(associates in Q[x]) for i = 1, . . . k. Since the units in Q[x] are all non-zero

constants, there must be ai, bi 2 D such that pi(x) =
ai
bi
qi(x). This means

that in D[x], bipi(x) = aiqi(x), and taking the content, we get

bi ⇠ c(bipi(x)) ⇠ c(aiqi(x)) ⇠ ai.

There is a unit ui 2 D such that bi = uiai, so qi(x) = uipi(x), and pi(x) ⇠
qi(x) (associates in D[x]). Now consider k < i. We have pk+1

· · · pr =
qk+1

. . . qs 2 D, and since D is a UFD, we must have r = s and pi ⇠ qi
in D for i = k + 1, . . . , r.

4.6 Irreducibility Criteria

We now establish some additional irreducibility criteria. Recall that Proposi-
tion 4.3.2 gives us some irreducibility criteria for polynomials in F [x], where
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F is a field. These additional criteria consider polynomials over a UFD, and
relates them to polynomials over the its field of fractions.

Proposition 4.6.1 [Gallian 17.3] Let D be a UFD, and Q its field of

fractions. Let S an ID, and ' : D ! S a ring homomorphism. Let

' : D[x] ! S[x]
r 7! '(r) for r 2 R
x 7! x

be the induced homomorphism on polynomials. Let f(x) 2 D[x] be non-

constant and let f(x) = '(f(x)). If the leading coe�cient of f(x) is not in

the kernel of ', and f(x) is irreducible in S[x], then f(x) is irreducible in

Q[x]. Moreover, if f(x) is primitive, then it is also irreducible in D[x].

02/06/19

Proof. Assume f(x) is reducible in Q[x]. By Scholium 4.5.7 there are non-
constant g(x), h(x) 2 D[x], such that f(x) = g(x)h(x). Since the leading
coe�cient of f(x) is not in ker('), neither are the leading coe�cients of g(x)

and h(x). Thus, we have f(x) = g(x)h(x) with g(x), h(x) non-constant,

showing that f(x) is reducible in S[x]. The moreover part follows from
Proposition 4.5.6.4.

Example 4.6.1. Let f(x) = x4 + 2x2 + 2x � x + 1 2 Z[x]. Reducing

the coe�cients (mod 2), we get f(x) = x4 + x + 1 2 Z
2

[x]. We claim this

polynomial is irreducible. First, it has no root in Z
2

, so, by Corollary 4.1.4, it
has no linear factors. To factor it as a product of two quadratic polynomials,
it would take the form

x4 + x+ 1 = (x2 + ax+ 1)(x2 + bx+ 1),

but looking at the coe�cients of x and x3 we get 1 = a+ b = 0, a contradic-
tion. Now, using Proposition 4.6.1, f(x) is irreducible in Q[x]. Since f(x) is
also primitive, it is irreducible in Z[x].
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Proposition 4.6.2 [Eisenstein’s Criterion] Let D be an integral domain, P
a prime ideal of D and f(x) 2 D[x] primitive. Write

f(x) = a
0

+ a
1

x+ · · ·+ anx
n.

If a
0

, . . . , an�1

2 P , an /2 P and a
0

/2 P 2

, then f(x) is irreducible in D[x].

Proof. If we had f(x) reducible in D[x], with the use of Proposition 4.5.6.4
and Scholium 4.5.7, it would factor as a product of two non-constant poly-
nomials of lower degree, say f(x) = g(x)h(x) where

g(x) = b
0

+ b
1

x+ · · ·+ bkxk,
h(x) = c

0

+ c
1

x+ · · ·+ cn�kxn�k,

and 1  k < n. We have a
0

= b
0

c
0

, so one and only one of b
0

, c
0

is in P .
WLOG, let’s say b

0

2 P and c
0

/2 P . Now, an = bkcn�k /2 P , so bk /2 P . Let
t 2 N be smallest such that bt /2 P . Consider the coe�cient

at = b
0

ct + b
1

ct�1

+ · · · btc0.

Since P is a prime ideal, the last summand on the right hand side, btc0 /2 P .
By the choice of t all other summand in the right hand side are in P . And,
since t  k < n we have at 2 P , a contradiction.

We state the special case when D = Z.

Corollary 4.6.3 [Eisenstein’s Criterion for Z, Gallian 17.4] Let

f(x) = a
0

+ a
1

x+ · · ·+ anx
n 2 Z[x]

be primitive, and p 2 Z a prime number such that p|a
0

, . . . , an�1

, p 6 |an and

p2 6 |a
0

. Then f(x) is irreducible.

Examples 4.6.2. 1. The polynomial x4 + 10x + 5 2 Z[x] is irreducible.
Apply Eisenstein’s criterion with p = 5.

2. If 1 6= a 2 Z is divisible by a prime number p, but not by p2, then
xn � a is irreducible in Z[x].



4.6. IRREDUCIBILITY CRITERIA 35

3. For a prime number p, the cyclotomic polynomial

�p(x) = xp�1 + xp�2 + · · ·+ x+ 1 2 Z[x]

is irreducible. To see this, observe that

�p(x) =
xp � 1

x� 1
, so �p(x+ 1) =

(x+ 1)p � 1

x
=

pX

i=1

✓
p

i

◆
xi�1,

so �p(x + 1) is irreducible, by Eisenstein’s criterion. It follows that
�p(x) is also irreducible.

4. A similar argument to that of previous example, shows that x4 + 1 2
Z[x] is irreducible.

The only remaining piece of Theorem 4.0.1 is an example of a PID that
is not an ED.

Exercise 4.6.1. Let � =
1 +

p
�19

2
and consider the subring of C given by:

R = {a+ b� | a, b 2 Z}

Prove that R is a PID but not an ED. A detailed proof can be found in [3].
The readers is encourage to prove as much as possible before looking up the
reference.

Problem Set 01 presentations02/08/19

Version 2019.5.9



36 CHAPTER 4. FACTORIZATION



Part III
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