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Abstract
We show that the union of n translates of a convex body in R3 can have Θ(n3) holes in the worst
case, where a hole in a set X is a connected component of R3 \ X. This refutes a 20-year-old
conjecture. As a consequence, we also obtain improved lower bounds on the complexity of motion
planning problems and of Voronoi diagrams with convex distance functions.
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1 Introduction

From path planning in robotics [17] to the design of epsilon-nets [7] to analyzing vulnerabilities
in networks [1], a variety of combinatorial and algorithmic problems in computational
geometry involve understanding the complexity of the union of n elementary objects. An
abundant literature studies how this union complexity depends on the geometry of the objects,
and we refer the interested reader to the survey of Agarwal, Pach and Sharir [2]. In the
plane, two important types of conditions were shown to imply near-linear union complexity:
restrictions on the number of boundary intersections [18, 12] and fatness [8, 16]. In three
dimensions, the former are less relevant as they do not apply to important examples such as
motion planning problems. Whether fatness implies low union complexity in R3 has been
identified as an important open problem in the area [14, Problem 4]; to quote Agarwal, Pach
and Sharir [2, Section 3.1, §2],

“A prevailing conjecture is that the maximum complexity of the union of such fat
objects is indeed at most nearly quadratic. Such a bound has however proved quite
elusive to obtain for general fat objects, and this has been recognized as one of the
major open problems in computational geometry.”

∗ B. Aronov is supported by NSF grants CCF-11-17336 and CCF-12-18791. O. Cheong and M. G. Dobbins
are supported by NRF grant 2011-0030044 (SRC-GAIA) from the government of Korea.

© Boris Aronov, Otfried Cheong, Michael Gene Dobbins and Xavier Goaoc;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


10:2 The Number of Holes in the Union of Translates of a Convex Set in Three Dimensions

A weaker version of this conjecture asserts that the number of holes in the union of n
translates of a fixed convex body in R3 is at most nearly quadratic in n. By a hole in a
subset X ⊆ Rd we mean a connected component of Rd \ X. This is indeed a weakening
since the number of holes is a lower bound on the complexity and a family of translates can
be made quite fat by applying a suitable affine transformation. Evidence in support of the
weaker conjecture is that in two dimensions, the union of n translates has at most a linear
number of holes [12], and in three dimensions, the union of n translates of a convex polytope
with k facets has at most O(kn2) holes [4], so the number of holes grows only quadratically
for any fixed convex polytope.

Remarkably, we refute the conjecture even in this weaker form. We construct a convex
body in R3 that has, for any n, a family of n translates with Θ(n3) holes in its union. This
matches the upper bound for families of arbitrary convex bodies in R3 [13].

I Theorem 1. The maximum number of holes in the union of n translates of a compact,
convex body in R3 is Θ(n3).

We start with a warm-up example illustrating the idea behind our construction (Section 2).
We then construct a polytope Km, tailored to the value ofm considered and with Θ(m2) faces;
we give a family of 3m translates of Km (in Section 3) whose union has Θ(m3) holes. The final
step of our construction is to turn the family of polytopes (Km) into a limiting “universal”
convex body K that, for any m, admits 3m translates whose union has Θ(m3) holes. We
prove this formally using arguments from algebraic topology, developed in Section 5.

Further consequences. We conclude this introduction with two examples of problems in
computational geometry whose underlying structure involves a union of translates of a convex
body, and on which Theorem 1 casts some new light.

A motion-planning problem asks whether an object, typically in R2 or R3, can move from
an initial position to a final position by a sequence of elementary motions while remaining
disjoint from a set of obstacles (and to compute such a motion when it exists). This amounts
to asking whether two given points lie in the same connected component of the free space;
that is, the set of positions of the object where it intersects no obstacle. When the motions
are restricted to translations, the free space can be obtained by taking the complement of the
union of the “expansion” (formally: the Minkowski sum) of every obstacle by the reflection of
the object through the origin. In the simplest case the mobile object is convex, the obstacles
consist of n points and the free space is the complement of the union of n translates of
a convex body; Theorem 1 implies that already in this case the free space can have large
complexity:

I Corollary 2. There exists a set P of n point obstacles and a convex body K in R3 such
that the free space for moving K by translations while avoiding P has Θ(n3) connected
components.

The Voronoi diagram of a family P of points p1, p2, . . . , pn, called sites, in a metric space
X is the partition of X according to the closest pi. A subset Q ⊆ P defines a face of the
diagram if there exist some point x ∈ X at equal distance from all sites of Q, and strictly
further away from all sites in P \ Q. A case of interest is when X is Rd equipped with a
convex distance function dU defined by a convex unit ball U (in general, dU is not a metric,
as U needs not be centrally symmetric). A face of the Voronoi diagram with respect to dU is
defined to be a connected component of the set {x : d(x, q) ≤ d(x, p), for all q ∈ Q, p ∈ P}
for some Q ⊂ P defining a face; the complexity of a Voronoi diagram is measured by the
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number of its faces of all dimensions. In R2, the complexity of the Voronoi diagram of n
point sites with respect to dU is O(n), independent of the choice of U [5, 9].

The state of knowledge is less satisfactory in three dimensions where we know near-
quadratic complexity bounds for the Voronoi diagram with respect to dU if U is a constant
complexity polytope [19], and that by making U sufficiently complicated one can have
four point sites define arbitrarily many Voronoi vertices (that is, isolated points at equal
distance from these four sites) [11]. If we grow equal-radii balls (for dU ) centered in each of
the pi simultaneously, every hole in the union of these balls must contain a Voronoi vertex.
Theorem 1 therefore implies that one can also find Ω(n3) different quadruples of point sites
defining Voronoi vertices.

I Corollary 3. There exist a convex distance function dU and a set P of n points in R3 such
that Ω(n3) different quadruples of P define a Voronoi vertex in the Voronoi diagram of P
with respect to dU .

Notation. For an integer n we let [n] denote the set {1, . . . , n}. If A and B are two subsets
of Rd we denote by A+B their Minkowski sum

A+B = {a+ b : a ∈ A, b ∈ B}

and by conv(A) the convex hull of A. We refer to coordinates in three space by x, y, z. We
refer to the positive z-direction as “upward,” and to the positive y-direction as “forward.”
For an object A ⊂ R3, the “front” boundary of A is the upper y-envelope. Similarly, the
“back” boundary is the lower y-envelope.

Remark on figures. The reader should take heed that in several places we give explicit
coordinates for a construction and provide a figure, where the figure depicts the qualitative
geometric features of interest using different coordinates. Using the coordinates chosen for
convenience of computation would have resulted in figures where features are too small to see.

2 Many holes touching a single facet

We first introduce the key idea of our constructions with a simpler goal: constructing 2m+ 1
translates of a convex polytope with Ω(m2) holes in the union, all incident to a common
facet.

Let K be the polytope depicted in Figure 1, the convex hull of the following seven points:

a = (0, 0, 0), b = (1, 0, 0), c = (0, 0,−1), d = (1, 0,−1),
e = (1/2, 1/2, 1/2) , f = (0, 1, 0), and g = (1, 1, 0).

We fix an integer m > 0 and let C = K be the trivial translate of K. Let F denote the
facet of C with vertices a, b, c, d. We then pick m translates of K, denoted B1, B2, . . . , Bm,
whose top-most vertices (corresponding to vertex e) are placed regularly along the edge
ab of F . The top part of the intersection Bj ∩ F is a triangular region, shown in blue in
Figure 1 (bottom). The union

⋃m
j=1 Bj bounds m− 1 regions below the edge ab of F . Let

` denote the height of one such region; that is the distance between B1 ∩B2 and the edge
ab of F . Let c′ denote the point on the segment ac of F at distance ` from a (see again
Figure 1 (bottom)). We next pick m translates of K, denoted A1, A2, . . . , Am, whose vertices
corresponding to f are placed regularly along the segment ac′.

SoCG 2016
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Figure 1 Top left: The convex polytope K for the construction of Section 2; Top right: three
important (x, z) cross-sections of K. The cross section in the back (green) is the facet F that touches
many holes, the one in the center (blue) is used to produce vertical cones, and the one in the front
(red) is used to produce horizontal edges. Bottom: The grid formed on the facet F by horizontal
segments and vertical cones.

B3
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B1
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Figure 2 The union of the translates B1, B2, . . . , Bm (left) and A1, A2, . . . , Am (right). The
spacing between the translates is exaggerated for clarity.

The intersections F ∩ Bj and F ∩ Ai, for i, j ∈ [m], form a grid in F with m(m − 1)
holes on F . Since two consecutive Ai leave only a narrow tunnel incident to F , and each Bj
entirely cuts this tunnel, each of the holes on F is indeed on the boundary of a distinct hole
in the union of all translates in R3.
I Claim 4. The union

⋃m
i=1 Ai ∪

⋃m
j=1 Bj ∪C has Ω(m2) holes, all touching the facet F of C.

Since this is only a warm-up example, we do not include a formal proof of the claim.

3 The construction of Km

The construction of Section 2 uses three features of K: a portion of a cone with apex e, a
portion of a prism with edge fg, and a facet F . We combined the Ai’s and the Bj ’s in a
grid-like structure that created Θ(m2) local minima in the y-direction on the front boundary
of the union

⋃
Ai ∪

⋃
Bj . Each of these minima is the bottom of a “pit”, and C acts as a

“lid” to turn each pit into a separate hole. The construction we use to prove Theorem 1 is
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based on a similar principle, but before giving this construction, we first fix a value m > 0,
and then build a convex polytope Km depending on m and a family of 3m translates with
Θ(m3) holes. The construction of Km consists of two parts, which we refer to as Front and
Back.

The auxiliary paths. To construct our polytope Km we use two auxiliary polygonal paths η
and γ. They both start at the origin 0. The path η has m edges, lies in the (y, z)-plane, and
is convex1 in both directions (0,−1, 0) and (0, 0,−1). The path γ has m+ 2 edges, lies in
the (x, y)-plane, and is convex in direction (0,−1, 0). We denote the jth vertex of η by wj,0
and the kth vertex of γ by w0,k, see the top left of Figure 3.
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Figure 3 Design of Front. Top left: The auxiliary paths η and γ. Top right: The surface η + γ

defining the “grid” of vertices wj,k. Bottom left: The points vj,k. Bottom right: The front boundary
of Front.

The front part. We define a “grid” of (m+1)× (m+3) points, which are the vertices of the
polyhedral surface η + γ (see the top right of Figure 3), by putting

wj,k = wj,0 + w0,k for j ∈ {0, 1, . . . ,m} and k ∈ {0, 1, . . . ,m+2}.

We then add a point vj,k on the edge wj,kwj,k+1 as follows (see the bottom left of Figure 3):

vj,k =
(
1− j

m+1
)
wj,k + j

m+1wj,k+1 for j ∈ {0, 1, . . . ,m} and k ∈ {0, 1, . . . ,m+1}.

For j ∈ {0, . . . ,m} we define two polygonal paths

γj = wj,0 + γ = wj,0wj,1wj,2 . . . wj,m+1wj,m+2 and
ξj = wj,0vj,0vj,1vj,2vj,3 . . . vj,mvj,m+1wj,m+2.

Note that ξ0 = γ0 = γ, that the paths γj are simply translates of γ, and that the path ξj lies
entirely in the convex region γj + (0,R−, 0) and the vertices of ξj lie on γj ; see Figure 4.

1 We say a path π is convex in a direction u if the orthogonal projection of π onto u⊥ is injective and the
set π + R+u is convex.

SoCG 2016
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The front part Front of Km is the convex hull of the paths ξj (see the bottom right of
Figure 3):

Front = conv
(
ξ0 ∪ ξ1 ∪ · · · ∪ ξm

)
.

Observe that the paths η and γ can be chosen so that, for each j ∈ [m], the path ξj lies
entirely on the front boundary as well as on the upper boundary of Front.

•
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

γ

ξ1

ξ2

ξm

x

y

Figure 4 View of the paths ξj from above (with the paths γj represented in grey).

Let Ej,k denote the edge wj,kwj,k+1 and let Ek = E0,k. Consider the point vj,k on Ej,k.
Since ξj lies entirely on the upper boundary of Front, no part of Front appears above
Ej,k, and since vj,k is the only point where the segment Ej,k intersects Front for j, k ∈ [m],
the vertical plane containing Ej,k intersects Front in a downward extending cone with
apex vj,k; see Figure 5. Note that this fails for k = 0 and for k = m+1.

∩ =

Figure 5 Intersection of vertical panels through the path γ1 with Front.

The back part. We now define two vectors, u1 =
wm,m+2 − (0, t, 0), where t is some positive real num-
ber, and u0, the orthogonal projection of u1 on the
(x, y)-plane. We define Back as the Minkowski sum
of the segment u0u1 and −γ, the reflection of γ with
respect to the origin (see Figure 6). The value of t
is adjusted so that Front and Back have disjoint
convex hulls.
By construction, Back consists of m+ 2 rectangles
orthogonal to the (x, y)-plane, namely the rectangles
u0u1 − Ek, for k ∈ {0, . . . ,m + 1}. The top and
bottom edges of each rectangle are u1−Ek and u0−Ek
respectively.

γ

u1 − γ

u0 − γ

u1

u0

z

y
x

Figure 6 Design of Back.

The polytope Km and its translates. We now letKm = conv(Front∪Back), see Figure 7,
and define three families of its translates. First, for k ∈ [m], we define a translate Ck such
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Figure 7 Left: The polytope Km. Right: Km as viewed from behind.

that the edge u1 − Ek of Ck coincides with the edge Ek of Km. Formally, we have

Ck = Km + ck, where ck = w0,k − (u1 − w0,k+1).

See Figure 8 (right). The vertical facet formed by u1−Ek and u0−Ek of Ck will be incident
to a quadratic number of holes, playing the same role as the facet F in the previous section.
Let us denote this facet as Rk.

Next, for j ∈ [m], we define a translate Bj of Km as follows:

Bj = Km + bj , where bj = −wj,0.

In other words, the path ξj of Bj lies in the (x, y)-plane and the vertex vj,k of Bj lies on Ek.
See Figure 8 (middle).

Consider now the edge Ek, for k ∈ [m]. For each j ∈ [m], the edge Ek contains the vertex
vj,k of Bj . By the argument above, the intersection of Bj with the facet Rk is a vertical cone
with apex (1− j/m+1)w0,k + (j/m+1)w0,k+1. These apices are regularly spaced along Ek, and
we obtain a configuration similar to Figure 1. In other words, the union

⋃
j∈[m] Bj bounds

m− 1 triangular regions below the edge Ek on the facet Rk of Ck.
We now pick a suffiently small number ε > 0 and define our final family of translates.

For i ∈ [m], let

Ai = Km + ai, where ai =
(
0, 0,− i

mε
)
.

The translates Ai are defined by translating Km vertically such that for every i ∈ [m] and
k ∈ [m], the edge Ek of Ai appears as a horizontal edge on Rk, cutting each of the m− 1
triangular regions. See Figure 8 (left).

The family F. We now finally set F = {A1, . . . , Am, B1, . . . , Bm, C1, . . . , Cm}. The union
of the family F has at least m2(m− 1) holes: For k ∈ [m], we consider the facet Rk of Ck.
On this facet, the union of the Bj and Ai forms a grid with m(m− 1) holes. As in Section 2,
we argue that each of these holes is incident to a distinct component of the complement of
the union of all the translates.

We will not give a formal proof of this fact, since we will give an even stronger construction
in Section 4, and we will include a formal, algebraic argument for the correctness of that
construction.

Explicit coordinates for Km. The reader not satisfied with the qualitative description of F
may enjoy verifying that the following coordinates satisfy the properties we needed for our

SoCG 2016
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γ γ γ

γ γ γ

Figure 8 Top from left: A translate Ai, Bj , and Ck. Bottom from left: The intersection of the
respective translates Ai, Bj , and Ck above with the facets R1, . . . , Rm.

construction:

wj,0 = (0,−3j, 1− 2−j) for 0 ≤ j ≤ m,
w0,k = (cos θk − 1, sin θk, 0) for θk = π

3
(
k−1
m + 1

)
, 1 ≤ k ≤ m+ 1,

w0,m+2 = (−2, 0, 0),
u1 = (−2,−3m− 3, 1− 2−m),
u0 = (−2,−3m− 3, 0).

4 Constructing a universal convex body

The family of translates constructed in Section 3 uses a convex polytope Km that depends
on m. In this section we construct a single convex body K that allows the formation of
families of n translates of K, for arbitrarily large n, with a cubic number of holes. (Note
that the position of the translates in the family will depend on n.)

The convex body K. The finite polygonal paths γ and η are replaced by infinite polygonal
paths. We must also redefine the vertices vj,k, but the rest of the construction remains
largely the same as before. (Figure 9 illustrates the construction.)
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Figure 9 A convex body K, not depending on n, with translates forming Θ(n3) holes.

Using ζs =
∑∞
t=1 t

−s for s ∈ {2, 3}, we define vertices as follows:

w0,0 = 0,
wj,0 = wj−1,0 +

(
0,−j−2, j−3) for j ∈ {1, 2, . . . },

w∞,0 = lim
j→∞

wj,0 = (0,−ζ2, ζ3) ,

w0,k = w0,k−1 +
(
k−2, k−3, 0

)
for k ∈ {1, 2, . . . },

w0,∞ = lim
k→∞

w0,k = (ζ2, ζ3, 0) ,

wj,k = wj,0 + w0,k for j, k ∈ {1, 2, . . . ,∞},

vj,k = 1
(j+1)3wj,k + (j+1)3−1

(j+1)3 wj,k+1 for j, k ∈ {0, 1, . . . },

u1 = (ζ2,−2, ζ3),
u0 = (ζ2,−2, 0).

We define the convex paths γ as w0,0w0,1w0,2 . . . w0,∞, and η as w0,0w1,0w2,0 . . . w∞,0. Again
we let Ek denote the edge w0,kw0,k+1, for k ∈ {0, 1, . . . }. The vertex vj,k lies on the edge
wj,kwj,k+1 = Ek +wj,0. For j ∈ {1, 2, . . . }, we set γj = wj,0 + γ, and define the convex path
ξj as wj,0vj,0vj,1vj,2vj,3 . . . wj,∞; note that ξ0 = γ. The path ξ∞ is equal to γ∞ = γ + w∞,0;
note that limj→∞ vj,k = w∞,k+1.

The front part of K is the convex hull of the paths ξj :

Front = conv(ξ0 ∪ ξ1 ∪ ξ2 ∪ · · · ∪ ξ∞).

The back part Back of K is the Minkowski sum of u1u0 and −γ. By construction, it is the
union of the rectangles u1u0 − Ek, for k ∈ {0, 1, 2, . . . }. The top and bottom edges of each
rectangle are u1 − Ek and u0 − Ek.

Finally, we define K = conv(Front ∪Back), concluding the description of our convex
body K. This body has the following property.

I Lemma 5. The polygonal path ξj lies entirely on the front boundary of K.

SoCG 2016
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Proof. We will show that any point in ξj lies outside the convex hull of the regions ξj′ +
(0,R−, 0), for j′ 6= j. Fix j ∈ N, and let Γ be the convex hull of the regions γj′ + (0,R−, 0),
for j′ 6= j. Since the path ξj′ lies in the convex region γj′ + (0,R−, 0), it suffices to show that
ξj lies outside Γ. Since the γj are just translates of γ, the body Γ is easy to describe. In
particular, between the (x, y)-parallel planes containing γj−1 and γj+1, its front boundary is
formed by rectangles that are the convex hull of Ek +wj−1,0 and Ek +wj+1,0. Let Π be the
(x, y)-parallel plane containing ξj and γj . The front boundary of Γ ∩Π is again a translate
of γ. We first compute this translate of γ, by finding the intersection point p of the segment
wj−1,0wj+1,0 with Π.

Let p′ = p−wj−1,0. This makes p′ the point at height 1/j3 on the line through the origin
and the point wj+1,0 − wj−1,0. Since

wj+1,0−wj−1,0 =
(

0,− 1
j2−

1
(j + 1)2 ,

1
j3 + 1

(j + 1)3

)
=
(

0, −j
2 − (j + 1)2

j2(j + 1)2 ,
j3 + (j + 1)3

j3(j + 1)3

)
,

this gives

p′ =
(

0, −(j + 1)(j2 + (j + 1)2)
j2(j3 + (j + 1)3) ,

1
j3

)
.

Since p = p′ + wj−1,0 and wj,0 − wj−1,0 = (0,−j−2, j−3), we have

p = wj,0 −
(

0, 1
j3 + (j + 1)3 , 0

)
.

We have just computed the front boundary γ + p of Γ∩Π, and we want to show that the
path ξj lies farther in front of this boundary. Since γ + p and ξj are convex paths, it suffices
to show that any vertex of γ + p lies behind ξj . These vertices are the points w0,k + p, for
k ∈ {0, 1, 2, . . . }. That is, we will show w0,k + p ∈ ξj + (0,R−, 0).

We fix some k ∈ {1, 2, . . . } and consider w0,k + p. The line parallel to the y-axis through
w0,k+p intersects the edge vj,k−1vj,k of ξj in a point q. We need to show that qy ≥ (w0,k+p)y
(here and in the following, we use superscripts x, y, z to denote the coordinates of a point).

It will be convenient to translate our coordinate system such that wj,k is the origin. This
means that Π is the plane z = 0. Letting J = (j + 1)3, we have:

w0,k + p− wj,k = w0,k + p− (wj,0 + w0,k) =
(

0, −1
j3 + J

, 0
)
,

vj,k − wj,k = 1−J
J wj,k + J−1

J wj,k−1 = J−1
J

[
wj,k+1 − wj,k

]
,

vj,k−1 − wj,k = 1
Jwj,k−1 − 1

Jwj,k = 1
J

[
wj,k−1 − wj,k

]
.

Now parameterize the segment vj,k−1vj,k as E(s), for 0 ≤ s ≤ 1, using our new coordinate
system:

E(s) = (1− s)J − 1
J

[
wj,k+1 − wj,k

]
+ s

J

[
wj,k−1 − wj,k

]
.

The x- and y-coordinates of the point E(s) are

E(s)x = (1− s)J − 1
J

1
(k + 1)2 −

s

J

1
k2 , E(s)y = (1− s)J − 1

J

1
(k + 1)3 −

s

J

1
k3 .

We have q − wj,k = E(t), for the t ∈ [0, 1] where E(t)x = 0. This condition is equivalent to
(1− t)(J − 1)k2 = t(k + 1)2, and therefore

t = (J − 1)k2

(k + 1)2 + (J − 1)k2 ,

E(t)y = 1− J
J

1
k(k + 1)((k + 1)2 + (J − 1)k2) ≥

1− J
J

1
2(J + 3) ,
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where we used k(k + 1) ≥ 2, k2 ≥ 1, (k + 1)2 − k2 ≥ 3, and the fact that 1 − J ≤ 0. We
further have

(w0,k + p− wj,k)y = −1
j3 + J

<
−1
2J <

1− J
2J(J + 3) ≤ E(t)y = (q − wj,k)y,

and therefore (w0,k + p)y < qy. Thus, w0,k + p ∈ ξj + (0,R−, 0), so ξj is in front of Γ and as
such is on the front boundary of K. J

The translates. We now pick a number m ∈ N and construct a family F of 3m translates
of K such that their union will have a cubic number of holes. This construction is identical
to the construction in Section 3:

First, for k ∈ [m], we define a translate Ck such that the edge u1 − Ek of Ck coincides
with the edge Ek of K, that is

Ck = K + ck, where ck = w0,k − (u1 − w0,k+1).

Again we denote the vertical facet formed by u1 − Ek and u0 − Ek of Ck as Rk.
Next, for j ∈ [m], we define a translate Bj of K as follows:

Bj = K + bj , where bj = −wj,0.

In other words, the path ξj of Bj lies in the (x, y)-plane, the vertex vj,k of Bj lies on Ek.
For the third group of translates we need to determine a sufficiently small ε > 0. First,

observe that the points wj,k, for j, k ∈ [m], do not lie on K. Let ε1 > 0 be smaller than
the distance of wj,k to K, for all j, k ∈ [m]. Second, consider the m2 points vj,k + bj for
j, k ∈ [m] on the path γ. Let ε2 be the shortest distance between any two of these points.

Consider now the segment wj,kwj,k+1, for some j, k ∈ [m]. It touches K in the point vj,k,
the rest of the segment lies entirely outside K. This implies that there is an εj,k > 0 such
that any line parallel to wj,kwj,k+1 at distance less than εj,k intersects K only within a
neighborhood of vj,k of radius ε2/3.

We choose ε < ε1 and ε < εj,k, for all j, k ∈ [m]. With this choice of ε > 0, we can finally
define, for i ∈ [m]:

Ai = K + ai, where ai =
(
0, 0,− i

mε
)
.

Our family F is

F = {A1, . . . , Am, B1, . . . , Bm, C1, . . . , Cm}.

The nerve. To every family X = {X1, X2, . . . , Xn} of n sets is associated a collection of
subfamilies N (X ), called the nerve of X , defined as follows:

N (X ) =
{
Y ⊆ X :

⋂
X∈Y

X 6= ∅
}
.

In a sense, the nerve is a natural generalization of the intersection graph. In Section 5, we
will count the number of holes in the union of F by computing the rank of certain matrices
defined in terms of its nerve. We now give an explicit description of the nerve of the family F.
Consider the following subfamilies of F:

∆1 = {A1, . . . , Am, B1, . . . , Bm},
∆2 = {B1, . . . , Bm, C1, . . . , Cm},

∆i,k = {Ai, Ck, Ck+1} for (i, k) ∈ [m]× [m− 1],
∆i,j,k = {Ai, Bj , Ck} for (i, j, k) ∈ [m]3.
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I Lemma 6. The set of inclusion-maximal subfamilies in N (F) is

M = {∆1,∆2} ∪ {∆i,k : (i, k) ∈ [m]× [m− 1]} ∪ {∆i,j,k : (i, j, k) ∈ [m]3}.

Proof. To check that the subfamilies inM are in N (F), we find a point in the intersection
of each of them. Specifically, we argue that

w0,k+1 + ai ∈ Ai ∩ Ck ∩ Ck+1,

vj,k + ai + bj ∈ Ai ∩Bj ∩ Ck,

(0,−1, 0) ∈
⋂
{A1, . . . , Am, B1, . . . , Bm},

(ζ2, 2,−1) ∈
⋂
{B1, . . . , Bm, C1, . . . , Cm},

see the full version [3, Appendix A] Now, let σ be a maximal subfamily in N (F). If σ does
not contain any Ck then σ ⊆ ∆1 and by maximality σ = ∆1. Similarly, if σ does not contain
any Ai then σ ⊆ ∆2 and by maximality σ = ∆2.

We can therefore assume that Ai, Ck ∈ σ. By definition of K and F we have Ai ∩ Ck =
Ek + ai. Since Ai ∩ Ck and Ai′ ∩ Ck are parallel segments for i′ 6= i, σ cannot contain Ai′ .

Assume now that σ contains no Bj . The segments Ek and Ek′ intersect if and only if k
and k′ differ by one. It follows that σ is either ∆i,k or ∆i,k−1.

In the final case, σ contains some Bj , for j ∈ [m]. The segment Ek + ai − bj is parallel to
wj,kwj,k+1 at distance at most ε < εj,k, and so it intersects K only in a neighborhood of vj,k
of radius at most ε2/3. It follows that Ek + ai intersects Bj = K + bj only in a neighborhood
of the same radius around the point vj,k + bj . But, the shortest distance between these points
is ε2, and so these neighborhoods are disjoint. It follows that σ contains no other Bj′ , for
j′ 6= j.

Since the point w0,k+ai lies at distance at most ε from w0,k, but the point wj,k = w0,k−bj
has distance larger than ε1 > ε from K, we have Ai ∩ Ck−1 ∩ Ck = w0,k + ai 6∈ Bj , and so
Ck−1 6∈ σ. For the same reason Ck+1 6∈ σ. It follows that σ = {Ai, Ck, Bj} = ∆i,j,k. J

5 Counting holes in the union via the nerve

In this section we use homology to count the number of holes in a union of convex objects
and prove Theorem 1; we first illustrate our arguments by giving a new proof of Kovalev’s
upper bound [13]. We start by recalling some standard topological machinery.

Homology and Betti numbers. An abstract simplicial complex ∆ with vertex set V is a
set of subsets of V closed under taking subsets: if σ ∈ ∆ and τ ⊆ σ then τ ∈ ∆. An element
σ ∈ ∆ is called a simplex ; the dimension of a simplex is its cardinality minus 1, so singletons
are simplices of dimension 0, pairs are simplices of dimension 1, etc. A simplex of dimension i
is called an i-simplex for short. The vertices of a simplex σ ∈ ∆ are the singletons contained
in σ. Note that the nerve of a family of convex sets is an abstract simplicial complex.

Let ∆ be an abstract simplicial complex on a totally ordered vertex set V . The ith real
chain space of ∆, denoted Ci(∆), is the real vector space spanned2 by the i-simplices of ∆.

2 In other words, the i-dimensional simplices of ∆ form a basis of the vector space Ci(∆), which consists
of formal sums of i-simplices, each simplex being assigned a real coefficient.
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For i ∈ N, the ith boundary map ∂i : Ci(∆)→ Ci−1(∆) is the linear map defined on a basis
of Ci(∆) as follows. For any i-simplex σ = {v0, v1, . . . , vi} ∈ ∆ with v0 < v1 < . . . < vi,

∂i(σ) =
i∑

j=0
(−1)j(σ \ {vj}).

That is, ∂i maps every i-dimensional simplex to an element of Ci−1(∆), namely an alternating
sum of its facets. Observe that ∂i ◦ ∂i+1 = 0, so that im ∂i+1 ⊆ ker ∂i. The ith simplicial
homology group Hi(∆,R) of ∆ is defined as the quotient ker ∂i/im ∂i+1 and the ith Betti
number βi(∆) of ∆ is the dimension of Hi(∆,R), hence:

βi(S) = dim ker ∂i − rank ∂i+1. (1)

If X is a subset of Rd, one can define, in a similar but more technical way, the singular
homology groups of X and its Betti numbers. We do not recall those definitions (the interested
reader is referred to [10, 15]) but emphasize two facts that will be useful:
(i) β0(X) is the number of connected components of X, assuming X admits a cell decom-

position.
(ii) If X = {X1, X2, . . . , Xn} is a family of convex objects in Rd and U =

⋃n
i=1 Xi then

Hi(U,R) ' Hi(N (X )); as a consequence, U and N (X ) have the same Betti numbers.
This follows from the classical Nerve Theorem of Borsuk [6].

Counting holes. We can now relate the number of holes in the union of a family of convex
objects to one particular Betti number of its nerve.

I Lemma 7. If X = {X1, X2, . . . , Xn} is a family of compact convex objects in Rd then the
number of holes of U =

⋃n
i=1 Xi is βd−1(N (X )) + 1.

Proof. The number of holes of U is, by definition, the number of connected components of
Rd \ U , which is β0(Rd \ U). Assume d > 1. For any compact locally contractible subset
T ⊆ Sd, Alexander duality gives βd−1(T ) = β0(Sd \ T )− 1. Identifying the d-sphere with the
one-point compactification of d-space, Sd ' Rd ∪ {∞}, we have that

β0(Rd \ U) = β0(Sd \ U) = βd−1(U) + 1,

and by the Nerve Theorem, βd−1(U) = βd−1(N (X )). J

As an illustration let us see how a version of the upper bound of Kovalev [13] for compact
convex objects immediately follows from Lemma 7:

I Corollary 8. The number of holes in the union of n compact convex objects in Rd is at
most

(
n
d

)
+ 1.

Proof. Let X be a family of n compact convex objects in Rd. By Lemma 7, the number of
holes of the union of the members of X is βd−1(N (X )) + 1. Let ∂i denote the ith boundary
operator of N (X ). By definition, βd−1 is the dimension of the quotient of the vector space
ker ∂d−1 by the vector space im ∂d. Now, ker ∂d−1 is contained in the space Cd−1(N (X ))
spanned by the (d − 1)-simplices of N (X ); since N (X ) has n vertices it has at most

(
n
d

)
simplices of dimension d−1 and ker ∂d−1 therefore has dimension at most

(
n
d

)
. This dimension

can only go down by taking the quotient by im ∂d, so βd−1(N (X )) ≤
(
n
d

)
. J
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The number of holes in the union of F. We now prove Theorem 1 by using Lemma 7.

Proof of Theorem 1. Kovalev [13] already established that any union of n convex objects
in R3 has O(n3) holes. Hence this bound applies to families of translates. It remains to
prove that this bound is tight by constructing a family whose union has Ω(n3) holes. Let K
denote the convex body, and let F denote the family of n = 3m translates of K constructed
above. Let U =

⋃
X∈FX.

Recall that the maximal simplices of N (F) are identified by Lemma 6. By Lemma 7, the
number of holes of U is β2(N (F)) + 1 which equals, by Equation (1), dim ker ∂2− rank ∂3 + 1,
where ∂i denotes the ith boundary map of N (F). We compute β2(N (F)) by computing
explicitly a basis for ker ∂2 and a basis for im ∂3.

To compute a basis of im ∂3, let S denote the set of 3-simplices of N (F) containing B1
and let T stand for the set of images of the simplices of S under ∂3:

S = {σ : |σ| = 4 and B1 ∈ σ} and T = {∂3σ : σ ∈ S}.

Observe that T is a linearly independent family. Indeed, for any σ ∈ S, the 2-simplex σ \{B1}
has non-zero coefficient in ∂3(σ) but has zero coefficient in ∂3(τ) for every τ ∈ S \ {σ}. To
see that T spans im ∂3, let σ be a 3-simplex of N (F). If B1 ∈ σ then σ ∈ A and so ∂3(σ) ∈ T.
If B1 /∈ σ, since ∂3 ◦ ∂4 = 0 we have

∂3 ◦ ∂4(σ ∪ {B1}) = λ∂3(σ) +
∑
X∈σ

λv∂3(σ ∪ {B1} \ {X}) = 0

where λ and the λv are in {±1}. This implies that ∂3(σ) is a sum of ±∂3(τ) with τ ∈ S, and
thus lies in the span of T. Therefore, as claimed, T is a basis of im ∂3.

Now, let S′ denote the set of 2-simplices in F that contain B1 and let T′ = {∂2σ : σ ∈ S′}.
The same arguments yield that T′ is a basis of im ∂2. Also let S′′ denote the set of all
2-simplices contained in F.

We can finally compute β2(N (F)) using the rank-nullity theorem,

β2(N (F)) = nullity ∂2 − rank ∂3 = dim C2(N (F))− rank ∂2 − rank ∂3 = |S′′| − |T′| − |T|.

Counting all quadruples in ∆1 or ∆2 that contain B1 (taking care that some quadruples
appear both in ∆1 and ∆2) we have

|T| = |S| = 2
(2m−1

3
)
−
(
m−1

3
)
.

Next, counting all triples in F that contain B1 we have

|T′| = |S′| =
(3m−1

2
)
.

Then, counting all triples contained in N (F), which are the triples in ∆i,j,k plus ∆j,k plus
the triples in ∆1 or ∆2 (accounting for triples belonging to both ∆1 and ∆2), we have

|S′′| = m3 +m(m− 1) + 2
(2m

3
)
−
(
m
3
)
.

Finally, using
(
a
b

)
−
(
a−1
b

)
=
(
a−1
b−1
)
, we have

β2(N (F)) = |S′′| − |T| − |T′|
= m+m(m− 1) + 2

(2m
3
)
−
(
m
3
)
− 2
(2m−1

3
)

+
(
m−1

3
)
−
(3m−1

2
)

= m3 +m(m− 1) + 2
(2m−1

2
)
−
(
m−1

2
)
−
(3m−1

2
)

= m3 −m.

So F is a family of 3m translates of a convex body, and the union has m3 −m+ 1 holes. J
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