
NOTES ON THE SYMMETRIC MATRIX THEOREM FOR MATH 304

1. Introduction

We will assume familiarity with Chapters 1–6 of the textbook.
We state the symmetric matrix theorem in Section 2. We discuss calculations of the diagonal

form in Section 3. In Section 4 we discuss problems requiring deduction of easy consequences of the
theorem.

Here is what is required knowledge for the final exam regarding the Symmetric Matrix Theorem:

• The statement of the symmetric matrix theorem.
• The easy part of the proof.
• Simple consequences of the theorem.
• Given a symmetric matrix A, diagonalize it: find an orthonormal matrix P and a diagonal

matrix D such that A = PDP T .

In addition proofs of Lemmas 3.2 and 3.1 are simple enough to make a good question for the final
exam.

After looking at the computations in Section 3, you will be wondering how you can be asked to
do such a problem on the final exam. The answer is that some of the steps can be given to you in
advance. For example, you could be told explicitly what the eigenvalues are, and possibly also some
of the eigenvectors.

You will be relieved to know that in practice, all of this can be done by a computer. Once you get
past this exam, the theoretical knowledge that lets you tell when something has gone wrong will be
more important than the ability to perform all these calculations by hand in a short time.

2. Statement of the Symmetric Matrix Theorem

The informal version of the symmetric matrix theorem is “symmetric matrices can be diagonalized”.
The formal statement is closer to “a real matrix is symmetric iff it can be orthogonally diagonalized”:

Theorem (Symmetric Matrix Theorem). A is an n × n symmetric matrix with real entries if and
only if there is a diagonal matrix D and an orthogonal matrix P such that P−1AP = D.

Remark 2.1. In this class we have only considered matrices with real entries, so the “real” is redundant.
I include it in the statement because subsequent courses will not all be so restrictive, and the adaptation
to matrices with complex entries is not entirely obvious.

The proof of one direction is easy: if D = P−1AP , or A = PDP−1, with D diagonal and P
orthogonal, then P−1 = P T and D = DT . Since taking transposes reverses the order of multiplication,
we have AT = (PDP T )T = (P T )TDTP T = PDP T = A, so A = AT and A is symmetric. The informal
statement only bothers to state the hard part, and eliminates the “orthogonal”.

Note that the matrix P is a “change of basis matrix” and P T = P−1 changes basis back. As noted
in Chapter 5, A is diagonalizable iff there is a basis of Rn consisting of eigenvectors for A. These
eigenvectors are the columns of the matrix P . See Theorem 5.3.15. Furthermore, the eigenvalues of
D and A are the same (Lemma 5.3.20), and they are the diagonal entries of D.
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3. How to Diagonalize a Matrix

The statement of the theorem leads directly to the following type of problem: given a symmetric
matrix A, find the orthogonal matrix P that diagonalizes it, and find D. In fact, in Chapters 1–6 of
the book all the tools to do this are already developed.

Here is an outline of how to proceed.

• First, find the eigenvalues of A, using the characteristic polynomial, as in §5.3.
• Next, find the eigenvectors correponding to these eigenvalues, again as in §5.3.

Because A is diagonalizable, there will be a basis consisting of these eigenvectors.
• The next step is to construct an orthonormal basis consisting of eigenvectors. Eigenvectors

corresponding to different eigenvalues of a symmetric matrix are automatically orthogonal,
(see Lemma 3.2 below), and can be normalized to have length 1, so the only case to worry
about is when the dimension of an eigenspace is more than 1, i.e. we have more than one
linearly independent eigenvector corresponding to a single eigenvalue. Here we can apply
Gram-Schmidt to the collection of eigenvectors corresponding to this eigenvalue.
• Then P is the orthogonal matrix of orthonormal eigenvectors, and the diagonal entries of D

are the eigenvalues corresponding to the columns of P , in that order.

A summary in outline form: how to find the diagonal form D of a symmetric matrix A and the
diagonalizing orthogonal matrix P .

• Find the eigenvalues of A.
• Find the corresponding eigenvectors.
• Make these eigenvectors into an orthonormal basis.
• Form the matrix P whose columns are the vectors in this orthonormal basis.
• The diagonal entries of D are the eigenvalues corresponding to the columns of P .

We’ll work through all of this in a couple of examples. But before we do, let’s prove the state-
ment made above, that eigenvectors corresponding to different eigenvalues are orthogonal. First a
preliminary lemma.

Lemma 3.1. Let A be a symmetric n× n matrix and u,v ∈ Rn. Then Au · v = u ·Av.

Proof. Use the characterization of dot product as matrix multiplication, and the fact that A = AT :

Au · v = (Au)Tv = uTATv = uT (Av) = u ·Av

�

Now we can show that eigenvectors corresponding to distinct eigenvalues are orthogonal.

Lemma 3.2. Let A be a symmetric n × n matrix and u,v eigenvectors with eigenvalues λ 6= µ
respectively. Then u · v = 0.

Proof. We have Au = λu, and Av = µv. Now we may use the properties of the dot product:
µu · v = u · µv = u · Av = Au · v, using the previous lemma. But Au · v = λu · v. So we have
µu · v = λu · v, and λ 6= µ, so this is possible only if u · v = 0. �

Remark 3.3. These proofs are an exercise in properties of the dot product and matrix multiplication.

Example 3.4. We now turn to our first example. Given the symmetric matrix

A =

 6 −2 −1
−2 6 −1
−1 −1 5


orthogonally diagonalize it, that is, find an orthogonal matrix P and a diagonal matrix D so that
P−1AP = D.
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Solution. Using the type of analysis we did in Chapter 5, the characteristic polynomial of A is

det(A− λI) = −λ3 + 17λ2 − 90λ+ 144 = −(λ− 8)(λ− 6)(λ− 3),

and the eigenvalues of A are 8, 6 and 3, all of multiplicity 1.
Form the matrix

A− 8I =

 −2 −2 −1
−2 −2 −1
−1 −1 −3


This matrix has rank 2, and its null space has dimension 1. Using the techniques of Chapter 3, find
a basis of the kernel consisting of the single vector v1 = (−1, 1, 0).

Form the matrix

A− 6I =

 0 −2 −1
−2 0 −1
−1 −1 −1


and find its kernel. A basis of the kernel is the single vector v2 = (−1,−1, 2).

Form the matrix

A− 3I =

 3 −2 −1
−2 3 −1
−1 −1 2


and find its kernel, as in Chapter 3. A basis of the kernel is the single vector v3 = (1, 1, 1).

These vectors are automatically orthogonal, as noted earlier, and so linearly independent. So they
form an orthogonal basis of R3, and to make them into an orthonormal basis we need only normalize
them to have length 1. We have ||v1|| =

√
2, ||v2|| =

√
6 and ||v3 =

√
3. This gives us

u1 =
v1

||v1||
=

−1/
√

2

1/
√

2
0

 u2 =
v2

||v2||
=

−1/
√

6

−1/
√

6

2/
√

6

 u3 =
v3

||v3||
=

1/
√

3

1/
√

3

1/
√

3


So, the matrices P and D are

P =

−1/
√

2 −1/
√

6 1/
√

3

1/
√

2 −1/
√

6 1/
√

3

0 2/
√

6 1/
√

3

 D =

 8 0 0
0 6 0
0 0 3


and we have P−1 = P T , A = PDP T . �

In the previous example, we did not have to do the “Gram-Schmidt” step, because all the eigenvalues
were distinct. Let’s try an example where we do have to do this extra step.

Example 3.5. Given the symmetric matrix

A =

 3 −2 4
−2 6 2

4 2 3


orthogonally diagonalize it, that is, find an orthogonal matrix P and a diagonal matrix D so that
P−1AP = D.

Solution. Using the type of analysis we did in Chapter 5, the characteristic polynomial of A is

det(A− λI) = −λ3 + 12λ2 − 21λ− 98 = −(λ− 7)2(λ+ 2)

and the eigenvalues of A are −2 (multiplicity 1) and 7 (multiplicity 2). Form the matrix

A− (−2)I =

 5 −2 4
−2 8 2

4 2 5


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It has rank 2, and its kernel has dimension 1, with basis consisting of the single vector v1 =
(−1,−1/2, 1).

Form the matrix

A− 7I =

 −4 −2 4
−2 −1 2

4 2 −4


This matrix has rank 1, so its kernel has dimension 2. The two vectors v2 = (1, 0, 1), v3 = (−1/2, 1, 0)
are a basis of the kernel. Note that v2 and v3 are linearly independent, but not orthogonal. Using
the Gram-Schmidt procedure, we form u2 = v2 and

u3 = v3 −
v2 · v3

v2 · v2
v2 = (−1/4, 1, 1/4)

Now normalize v1,u2,u3 to vectors of length 1 and use them as the columns of the matrix P . So we
have

P =

 −2/3 1/
√

2 −1/
√

18

−1/3 0 4/
√

18

2/3 1/
√

2 1/
√

18

 D =

 −2 0 0
0 7 0
0 0 7


Again, note that P−1 = P T , and A = PDP T . �

4. Simple Consequences of the Symmetric Matrix Theorem

Here we consider a few problems that require short deductions based on the theorem.
(True | False) An n× n matrix that is orthogonally diagonalizable must be symmetric.
True. This is the easy half of the Symmetric Matrix Theorem.
(True | False) An n× n symmetric matrix has n distinct real eigenvalues.
False. The n × n identity matrix I is diagonalizable, and has only one eigenvalue, namely 1. The

3× 3 matrix A in Example 3.5 above has only two distinct eigenvalues.
(True | False) If A is a symmetric, invertible matrix, then A−1 = AT

False. The given condition defines an orthogonal matrix. Not every symmetric matrix is orthogonal.
Consider, for example 2I.

Now let’s try a multiple choice question:
If A is an n× n real symmetric matrix, then which of the following are true?

(a) Each eigenvalue of A is real.
(b) If A is invertible, then its inverse is also symmetric.
(c) If Ax = 2x and Ay = 3y then x · y = 0.
(d) If λ1 and λ2 are two different eigenvalues ofA andW1 andW2 are the corresponding eigenspaces,

then W1 and W2 are orthogonal sets

Answer: All of them. Note that (c) and (d) are about orthogonality of eigenvalues, discussed earlier
in these notes. (a) is part of the Symmetric Matrix Theorem. For part (b), by the Symmetric Matrix
Theorem, A = PDP T , with P orthogonal (and hence invertible with P−1 = P T ). We can write
A−1 = (PDP T )−1 = (P T )−1D−1P−1 = PD−1P T . Note that D−1 is also a diagonal matrix and so
equal to its transpose. Now compute

(A−1)T = (PD−1P T )T = (P T )T (D−1)TP T = PD−1P T = A−1

showing that A−1 is symmetric.
Note the similarity of this computation to the work for the “easy half” of the Symmetric Matrix

Theorem.


