The statement "Whether or not $\lim _{x \rightarrow a} f(x)$ exists, depends on how $f(a)$ is defined," is true
(a) sometimes,
(b) always,
(c) never.

Find the following limits.
a) $\lim _{x \rightarrow 7^{-}} \frac{x+6}{x-7}$
c) $\lim _{x \rightarrow 1^{+}} \frac{8}{x^{3}-1}$
b) $\lim _{x \rightarrow 4} \frac{3-x}{(x-4)^{2}}$
d) $\lim _{x \rightarrow 1^{-}} \frac{8}{x^{3}-1}$

If a function f is not defined at $x=a$,
a) $\lim _{x \rightarrow a} f(x)$ cannot exist
b) $\lim _{x \rightarrow a} f(x)$ could be 0
c) $\lim _{x \rightarrow a} f(x)$ must approach ∞
d) none of the above.

Draw the graph of a function $f(x)$ such that $\lim _{x \rightarrow 4} f(x)=5$ and $f(4)=5$, or explain why this is $x \rightarrow 4$ impossible.

Draw the graph of a function $g(x)$ such that $\lim _{x \rightarrow 4} g(x)=5$ and $g(4)=4$, or explain why this is impossible.

Draw the graph of a function $h(x)$ such that $\lim _{x \rightarrow 4} h(x)=5$ and $h(4)$ is undefined, or explain why $x \rightarrow 4$ this is impossible.

Draw the graph of a function $f(x)$ such that $\lim _{x \rightarrow 6^{-}} f(x)=5$ and $\lim _{x \rightarrow 6^{+}} f(x)=7$, or explain why $x \rightarrow 6^{-}$ this is impossible.

Draw the graph of a function $g(x)$ such that $\lim _{x \rightarrow 6^{-}} g(x)=5$ and $\lim _{x \rightarrow 6^{+}} g(x)=7$ and $g(6)=10$, or explain why this is impossible.

Draw the graph of a function $h(x)$ such that $\lim _{x \rightarrow 6^{-}} g(x)=5$ and $\lim _{x \rightarrow 6^{+}} g(x)=5$ and $\lim _{x \rightarrow 6} g(x)$ is undefined, or explain why this is impossible.

If all that you know about a function $g(x)$ is that $g(5)=-3$ and $g^{\prime}(5)=4$, what is your best estimate of $g(7)$?

