NOTE: In the following pages are 5 sample final exams given to past 323 students by the Calc 3 coordinator Dr. Bill Kazmierczak. The purpose of these exams is to help review material. Some problems on these exams were not covered in class so are redacted. IMPORTANT: Please do not only study these problems! There are a great variety of problems we did this semester and your final exam may have different types of problems!

Calculus 3 Final Sample Exam 1

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 3. Find all critical points of the function $f(x,y) = 4x - 3x^3 - 2xy^2$. For each critical point determine if it is a local maximum, local minimum or a saddle point.

Problem 4. Find the volume of the solid E bounded by $y = x^2$, $x = y^2$, z = x + y + 5, and z = 0.

Problem 5. Find the integral of the function $f(x,y) = y^2$ on the region bounded by $y^2 = x + 4$, x = 0, and $y \ge 0$. Simplify your answer as much as possible.

Problem 7. Evaluate the line integral $\oint_C e^{2x+y} dx + e^{-y} dy$ along the **negatively** oriented closed curve C, where C is the boundary of the triangle with the vertices (0,0), (0,1), and (1,0).

Problem 9. Evaluate the line integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$ for the vector field $\mathbf{F}(x,y,z) = -y\,\mathbf{i} + x\,\mathbf{j} - z\,\mathbf{k}$, where the closed curve C is the boundary of the triangle with vertices (0,0,5), (2,0,1), and (0,3,2) traced in this order.

Problem 10. Evaluate the flux of $\mathbf{F}(x,y,z) = z^2 y \, \mathbf{i} + x^2 y \, \mathbf{j} + (x+y) \, \mathbf{k}$ over S, where S is the closed surface consisting of the coordinate planes and the part of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant $x \ge 0$, $y \ge 0$, $z \ge 0$, with the normal pointing outward.

Calculus 3 Final Examination Sample 1 - ANSWERS

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 3. $(0,\sqrt{2})$ and $(0,-\sqrt{2})$ - saddles; $(\frac{2}{3},0)$ - local maximum $(-\frac{2}{3},0)$ - local minimum

Problem 4. $\frac{59}{30}$

Problem 5. $\frac{64}{15}$

Problem 7. $\frac{e^2}{2} - e + \frac{1}{2}$

Problem 9. 6.

Problem 10. $\frac{16\pi}{15}$

Calclulus 3 Final Sample Exam 2

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 1. Function f is given by the formula $f(x,y) = 2x^2 + 3e^{xy}$.

- a) Find the directional derivative of f at the point P = (1,0) in the direction of the vector $\mathbf{u} = <-1, 2>$.
- b) Find the maximal rate of change of f(x,y) at P and the direction in which it occurs.

Problem 2. The curve is given parametrically by $\mathbf{r}(t) = \langle t^3 + \frac{1}{2}t^2, 2t - 1, t^2 + t\sqrt{5} \rangle$.

Set up the integral representing the length of the curve from the point (0,-1,0) to the point $(10,3,4+2\sqrt{5})$.

DO NOT EVALUATE THE INTEGRAL.

Problem 3. Find an equation of the plane tangent to the surface $x^2 + y^2 z^2 = 8$ at the point P = (2, 2, 1).

Problem 4. Find all critical points of the function $f(x,y) = x^2 + 4xy - 10x + y^2 - 8y + 1$. For each critical point determine if it is a local maximum, a local minimum or a saddle point.

Problem 5. Find the work done by the force $\mathbf{F}(x,y) = 3y\mathbf{i} + x\mathbf{j}$ in Work = Fode moving a particle along the boundary of the trapeziod with the vertices (0,0), (1,1), (2,1) and (3,0) in the clockwise direction.

> Problem 6. Find SISS(xxxx) Where E is the solid bounded by the surfaces the formula $\rho(x, y, z) = y^2 + z^2$.

> > **Problem 7.** a) Determine whether the vector field $\mathbf{F}(x, y, z) = (2y + 4z)\mathbf{i} + (2x + 3z)\mathbf{j} + (4x + 3y)\mathbf{k}$, is conservative or not.

b) Evaluate $\int_C (2y+4z)dx + (2x+3z)dy + (4x+3y)dz$, where C is the curve given by $\mathbf{r}(t) = \langle t^3, 2\sin\left(\frac{\pi t}{2}\right), 3\cos\left(\frac{\pi t}{2}\right) \rangle$ for $0 \le t \le 1$.

Problem 8. Find the maximum and minimum values of the function F(x, y, z) = x - y on the $x^2 + y^2 + xy + z^2 = 1$

Problem 9. Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$, if $\mathbf{F}(x,y,z) = y\mathbf{i} + 2x\mathbf{j} + yz\mathbf{k}$, and C is the curve of intersection of the part of the paraboliod $z = 1 - x^2 - y^2$ in the first octant $(x \ge 0, y \ge 0, z \ge 0)$ with the coordinate planes x = 0, y = 0and z = 0, oriented counterclockwise when viewed from above.

Problem 10. Evaluate $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$, if $\mathbf{F}(x, y, z) = (yz)\mathbf{i} + (x^2y)\mathbf{j} + (4zx^2)\mathbf{k}$ and S is the surface of the solid bounded by the upper hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$, and the plane z = 0 with the normal pointing outward.

Calculus 3 Final Examination Sample 2 - ANSWERS

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 1. a)
$$\frac{2}{\sqrt{5}}$$
 b)< $\frac{4}{5}$, $\frac{3}{5}$ > (or < 4, 3 >)

Problem 2.

roblem 2.
$$\int_{0}^{2} \sqrt{(3t^2 + t)^2 + 4 + (2t + \sqrt{5})^2} dt$$

Problem 3.
$$(x-2) + (y-2) + 2(z-1) = 0$$

Problem 4. (1,2) - saddle point

Problem 5. 4

Problem 6. $\frac{5\pi}{3}$

Problem 7. a) conservative; b) 4

Problem 8. Absolute minimum is -2 at (-1, 1, 0); Absolute maximum is 2 at (1, -1, 0)

Problem 9. $\frac{\pi}{4} + \frac{4}{15}$

Problem 10. $\frac{2\pi}{3}$

Calculus 3 Final Sample Exam 3

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 3. Determine all local maxima, local minima and saddle points of $f(x,y) = 3y - y^3 - 3x^2y$.

Problem 4. A rectangular box without a lid is to be made from 48 ft^2 of cardboard. Find the maximum volume of the box.

Problem 5. Find $\iint y^2 dA$ and $\iint y dA$, where R is the region bounded by $y^2 = x + 4$, x = 0, and $y \ge 0$.

Divide your answers for the integrals.

Problem 6. Find the volume of the solid that lies within the cylinder $x^2 + y^2 = 4$, above the (x, y)-plane, and below the cone $z^2 = 4x^2 + 4y^2$.

Problem 7. Let **F** be the two-dimensional vector field given by $\mathbf{F}(x,y) = \langle ye^{xy} - 1, xe^{xy} + 2y \rangle$.

a) Determine if F is a conservative vector field, and if so, find a potential function.

b) Find the value of the line integral $\int \mathbf{F} \cdot \mathbf{T} ds$, where C is the line segment from (0,3) to (5,0).

Problem 8.

Find the value of $\oint_C -5x^2 dx + 7xy dy$,

where C is the closed curve consisting of the edges of the triangle with vertices (0,0), (3,1),and (0,3),oriented counterclockwise.

Problem 9.

F ind the total flux $\iint_S \mathbf{F} \cdot \mathbf{n} \ dS$

of the vector field $\mathbf{F}(x,y,z) = \langle x^2, yz^2, -2xz \rangle$ across the surface S given by $x^2 + y^2 + z^2 = 2$ with outward orientation.

Problem 10.

 $\mathbf{\mathcal{E}}$ valuate $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where

 $\mathbf{F}(x,y,z) = e^x \mathbf{i} + (x^2 + y^2) \mathbf{j} + z \mathbf{k}$, and C is the boundary of the part of the plane 2x + y + 2z = 2 in the first octant oriented counterclockwise when viewed from above.

Calculus 3 Final Examination Sample 3 - ANSWERS

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 3. (1,0) and (-1,0) - saddles; (0,1) - local maximum

(0,-1) - local minimum

Problem 4. $32 ft^2$

Problem 5. $\frac{16}{15}$

Problem 6. $\frac{32\pi}{3}$

Problem 7. a) conservative; $f(x,y) = e^{xy} + y^2 - x$ b) -14

Problem 8. 42

Problem 9. $\frac{16\pi\sqrt{2}}{15}$

Problem 10. $\frac{2}{3}$

Calculus 3 Final Sample Exam 4

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 1. The points A(2,1,3), B(0,5,5), C(3,6,9) and D(5,2,7) are the vertices of a parallelogram P.

Problem 2. Determine whether the lines

 $L_1: x = t + 2, y = 3t + 1, z = t + 3, L_2: x = -2s + 3, y = -2, z = 4s - 2,$ intersect. If they intersect, find the point(s) of intersection. If they do not intersect, are they parallel?

Problem 3. Let S be the level surface defined by $x^2 - y^2 + z^2 = 1$.

- (a) Find the equations of the tangent plane and normal line to S at the point (1, 1, -1).
- (b) Find all the points of intersection of the line found in (a) and the surface S (of course, (1, 1, -1) is one of them).

Problem 4. The position of a particle at time t is given by the function $\mathbf{r}(t) = \left\langle \frac{1}{3}t^3, 2t\sin t, 2t\cos t \right\rangle, t \geq 0$. Find the speed v(t) of the particle and the distance traveled (arc length) between the times t=0 and t=3.

Problem 5. Let z = xy, x = uv, y = vw. Use the Chain Rule to find $\frac{\partial z}{\partial u}, \frac{\partial z}{\partial v}$ and $\frac{\partial z}{\partial w}$. Give your answers in terms of the variables u, v and w alone.

Problem 6. Let $f(x,y) = (x-3)^2 + (y+3)^2$.

- (a) Find the minimum and maximum values of f under the constraint $x^2 + y^2 = 8$.
- (b) Find the minimum and maximum values of f in the disk with center (0,0) and radius $\sqrt{8}$.

Problem 7. Evaluate $\int \int_D 4y^2 dA$ where D is the intersection of the unit disk with the first quadrant: $D = \{(x,y)|x \geq 0, y \geq 0, x^2 + y^2 \leq 1\}$.

Problem 8. Determine whether the field **F** is conservative. If it is, evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the plane curve with equation $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$, $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.

- (a) $\mathbf{F}(x, y) = x^2 \cos y \,\mathbf{i} + 2x \sin y \,\mathbf{j}$.
- (b) $\mathbf{F}(x, y) = (\sin x + \cos y) \mathbf{i} + (2 x \sin y) \mathbf{j}$.

Problem 9. Let D be a plane region whose boundary C is a simple smooth closed curve. Assume that the area of D is 3 and that C is given the clockwise orientation. Evaluate $\int_C (xy^2 + 2y)dx + x^2ydy$. (You are not allowed to make any specific choice for D.)

Problem 10. Find the flux $\int \int_S \mathbf{F} \cdot d\mathbf{S}$ of the constant vector field $\mathbf{F}(x,y,z) = \langle 0,0,1 \rangle$ across the surface S with vector equation $\mathbf{r}(u,v) = \langle u^2 - v, u + v^2, uv \rangle$, $0 \le u \le 1$, $0 \le v \le 1$.

Calculus 3 Final Examination Sample 4 - ANSWERS

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 1.

The area is $14\sqrt{3}$.

Problem 2. The lines intersect at (1, -2, 2).

Problem 3. a) Plane: x - y - z = 1;

line: x = 1 + t, y = 1 - t, z = -1 - t

b) (1, 1, -1) and (-1, 3, -3).

Problem 4. $v(t) = t^2 + 2$

d = 15

Problem 5. $\frac{\partial z}{\partial u} = v^2 w$, $\frac{\partial z}{\partial v} = 2uvw$, $\frac{\partial z}{\partial w} = uv^2$

Problem 6. Answer for both parts a) and b):

Absolute maximum is 50 at (-2,2);

Absolute minimum is 2 at (2, -2)

Problem 7. $\frac{\pi}{8} - \frac{1}{4}$

Problem 8. a) Not conservative;

b) Conservative; 4

Problem 9. 6

Problem 10. 2

Calculus 3 Final Sample Exam 5

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 1. Find the points on the cone $z^2 = x^2 + y^2$ closest to the point $(1, \sqrt{3}, 4)$.

Problem 2. Express the volume of the tetrahedron with vertices at points (0,0,0), (1,0,0), (0,2,0), (0,0,3) as a triple integral. Write out the limits of integration explicitly, but do not evaluate.

Problem 3. Write the equation of +1e plane tangent to the cone $z^2=x^2+y^2$ at the point (1,0,1).

Problem 4.

Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where

 $F(x, y, z) = e^x \mathbf{i} + (x^2 + y)\mathbf{j} + z\mathbf{k}$, and C is the boundary of the part of the plane 2x + y + 2z = 2 in the first quadrant oriented counterclockwise as viewed from above.

Problem 5. Consider the helix $r(t) = \cos t, \sin t, t > 0 \le t \le \pi$. Find the length of this helix.

Problem 6. Let D be the region

 $D = \{(x, y, z) : x^2 + y^2 + z^2 \le 2, z \ge x^2 + y^2\}$ and S be the surface of D with outward pointing normal.

- a) Calculate the volume of D.
- b) Let $\mathbf{F}(x,y,z) = \langle yz^2, 3x + z\cos x, x^2y^3 \rangle$. Use the divergence theorem and the result in part a) to find $\iint_S \mathbf{F} \cdot d\mathbf{S}$.

Problem 7. Let S be the lateral surface of the cone $z^2 = x^2 + y^2$, between z = 0 and z = 1 with outward orientation, and let $\mathbf{F}(x, y, z) = \langle -y, x, 0 \rangle$. Denote by I the value of the integral $\iint curl(\mathbf{F}) \cdot d\mathbf{S}$.

- a) Compute $curl(\mathbf{F})$ and $div(\mathbf{F})$.
- b) Find I by direct evaluation.
- c) Find I by using Stokes' theorem.
- d) Find I by use of the divergence theorem. (Hint: Cover the top of the cup by a flat circular disk.)

Problem 8. Find two non-zero vectors \mathbf{v} and \mathbf{w} , such that $\mathbf{v} \cdot \mathbf{w} = 0$ and both \mathbf{v} and \mathbf{w} are perpendicular to the line x = y = z.

Problem 9. Find the limit, if it exists:

$$\lim_{(x,y)\to(0,0)} \frac{2009x^2 - y^2}{1 - \sqrt{1 + 2009x^2 - y^2}}$$

Problem 10. Let $\mathbf{F}(x,y,z) = \langle xy-3, -y^2, yz-z \rangle$. Evaluate in the simplest way possible the surface integral $\int\limits_S \int \mathbf{F} \cdot \mathbf{n} dS$, where S is the boundary of the unit cube $\{(x,y,z): 0 \leq x,y,z \leq 1\}$, and \mathbf{n} denotes the inward unit normal to S.

Calculus 3 Final Examination Sample 5 - ANSWERS

courtesy of Dr. Inna Sysoeva, University of Pittsburgh, adapted

Problem 1. $(\frac{3}{2}, \frac{3\sqrt{3}}{2}, 3)$

Problem 2. There are 6 possible correct answers. One of the possible answers is:

$$\int_{0}^{1} \int_{0}^{(2-2x)} \int_{0}^{(1-\frac{y}{2}-\frac{z}{3})} dz \ dy \ dx$$

Problem 3.

$$x - z = 0$$
.

Problem 4. $\frac{2}{3}$

Problem 5. $\sqrt{2}\pi$;

Problem 6. a) $\frac{4\pi\sqrt{2}}{3} - \frac{7\pi}{6}$; b) 0.

Problem 7. a) < 0, 0, 2 > and 0; The answer for b),c), d): $\frac{4\pi}{3}$

Problem 8. There are many possible correct answers here. A possible choice: $\mathbf{v} = <1, -1, 0>$ and $\mathbf{w} = <1, 1, -2>$

Problem 9. -2

Problem 10. 0