To all 323 students:

The following are two old midterm exams (titled “Sample 1” “Sample 2” &
“Sample 3”) that were given for Math 323 Exam 3. Please ignore the following
problems from these exams:

-First Test “Sample 1”: #6
-Third Test “Sample 3”: #7(a), #3



Math 323 Midterm Examination 3, Sample 1

Problem 1. Evaluate the integral of the function F(x,y,2) = zyz
over the part of the unit ball lying in the first octant (that is, all
coordinates are non-negative).

a) using spherical coordinates

b) using cylindrical coordinates



Problem 2. Given the curve 7(t) =< 2t,t%,Int >, between points
(2,1,0) and (4,4,1n2). Evaluate the integral.

/f(x,y, z) ds
c

where f(x,y,z) =z — 2y.

Problem 3. Given the vector field F' =< 2xy, 2% + 4y >.
a) Determine if it is conservative. If it is, find its potential.

b) Find the integral of F' over the curve C that connects (1,0) and
(0, 1), going counter-clockwise along the unit circle.
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Problem 4. Given a vector field F =< 3z%y,z® — 22 > and the
closed curve C' which is a circle of raduis 2 centered at (3, 2), traversed
clockwise.

a) Set up [ F - dF using the definition of the line integral and a

c

suitable parametrization of C'. Do not calculate.

b) Find [ F - dF using Green’s Theorem.
C

Problem 5. Find the divergence and the curl of the vector field
F=<ayyz,o+2>



Problem 6. Find the integral of the function F(z,y) = x — 3y over
the parallelogram with vertices (1,2), (3,5), (0,4), and (—2,1).

Problem 7. Evaluate the integral

/D/ / xy’z dV

Here D lies above the region on the zy-plane bounded by the parabola
y = 2% and the line y = 4. And D is bounded above by the sphere of
radius b centered at the origin.



Problem 8. The curve C'is given parametrically as
(x,y) = ((10+ cos(2018t)) cost, (10 + cos(2018t))sint), 0 <t < 27
The vector field F' is given as < 77 777 > Find the integral of F
over C, traversed from ¢t =0 to t = 2.



Math 323 Midterm Examination 3, Sample 2

Problem 1. Evaluate the integral [ f(z,y,z) ds, where the curve
c
C is given by
r=<J3cost,3sint, 4t >, 0<t<m

and f(z,y,z) =xz

Problem 2. Given the vector field F' =< y?,y? + 2zy >.
a) Determine if it is conservative. If it is, find its potential.

b) Find the integral of I over the straight oriented segment from
A=(2,0)to B=(0,1).



Problem 3. Find the volume of the solid defined by the inequalities

Py 22 <4 2> a2

Problem 4. Evaluate the integral of the function F(z,y) = 2> + 1
over the ellipse 422 + y? < 1 with respect to area.



Problem 5. Given the vector field
F =< 2®yz, 292, 2y2* >
a) Find and simplify the curl of F

b) Find and simplify the divergence of the curl of F'

¢) Find and simplify the divergence of F

d) Find and simplify the gradient of the divergence of F



Problem 6. Evaluate the integral

/D//z?czv

where D is the ball of radius 2 centered at the origin.

Problem 7. Evaluate the integral of F =< 2x,xzy > over the
boundary of the square ABCD, where A = (0,0), B = (3,0), C' =
(3,3), and D = (0, 3), traversed counter-clockwise.
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Problem 8. Construct an example of a vector field F=<PQ>in
some domain in the plane, such that P, = ), but F’ is not conservative.
Justify.



Math 323 Midterm Examination 3, Sample 3

Problem 1. Find the volume of the solid that lies inside the sphere
2% 4+ y? + 22 = 2 and above the paraboloid z = 22 + v2.

Problem 2. Given the vector field F =< y?, = >.
a) Determine if it is conservative. If it is, find its potential.

b) Find the integral of I over the straight oriented segment from
A=(1,0) to B=(0,1).



Problem 3. Evaluate the integral of the function F'(x,y) = x over
the domain D defined by the inequality 2% + 2z + 4y? < 3.

Problem 4. Evaluate the integral [ f(z,y,z) ds, where the curve
c
C is given by
F=<t,t’t?>, 0<t<l1
and f(z,y,z) =2x+ 9z



Problem 5. Evaluate the integral

///(:zc2 + y22018) av

where D is the ball of radius 3 centered at the origin.

Problem 6. Evaluate the integral of F =< xy,azy > over the
boundary of the square ABCD, where A = (1,1), B = (1,2), C' =
(2,2), and D = (2,1) (traversed clockwise).



Problem 7. Find the conservative vector field F =< P,Q,R >
such that

P =2xz, QQ =2y+ 3z R(0,0,0) =1, R does not depend on z.

b) Find a potential of F' from part (a).

c) Find the integral of F' from part (a) over the curve
7(t) =< t,t2,t> >, where t goes from 0 to 2.
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Problem 8. Construct an example of a non-constant vector field F
on R3 such that both the divergence and the curl of F' are identically
zero. Justify.



Math 323 Midterm Examination 3, Sample 1

Problem 1. Evaluate the integral of the function F(z,y, 2) = zyz
over the part of the unit ball lying in the first octant (that is, all
coordinates are non-negative).
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Problem 2. Given the curve 7(t) =< 2t,t?,Int >, between points
(2,1,0) and (4,4,1n2). Evaluate the integral.

—> [
where f(z,y,2) =z — 2y. ﬁ‘?lf“ <’2 ZZ/%’“>
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Problem 3. Given the vector field F =< 2zy, 2% + 4y >.
a) Determine 1f it is conservative. If it is, find its potential.

K :: 2 (% So 174 &as&éf\/fo‘#\/{
dg éi; ¢ F V(T;} /2 P = fz):/?z/; = 10/,% C/g)
) = =7 %f‘Caz«///?ﬁ
x+@»§}~yfwﬁ%> S, ely)=vy, Clyl=

d‘

b) Find the integral of F' over the curve C' that connects (1,0) and
(0,1), going counter-clockwise along the unit circle.

By FTC, [Fodr = Pon)- Pl o)=2-0=[2]
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Problem 4. Given a vector field F =< 3z2%y,z3 — 2z > and the

closed curve C which is a circle of raduis 2 centered at (3, 2), traversed
clockuwrise.

a) Set up [ F . dF using the definition of the line integral and a

c
suitable parametrization of C. Do not calculate.
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b) Find [ F - dF using Green’s Theorem.
¢
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Problem 5. Find the divergence and the curl of the vector field
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Problem 6. Find the integral of the function F'(z,y) = z — 3y over
the parallelogram with vertices (1,2), (3,5), (0,4), and (—2,1).
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Problem 7. Evaluate the integral
///:cyzzdv
Here D lies above the region O’;l the zy-plane bounded by the parabola
y = z? and the line y = 4. And D is bounded above by the sphere of
/f;;i 5 centered zc t};f 021; e
T /
a2 b < [ [ by
X7 Z xS |
2 (¥ A - 2){69 2 Xif_{,)( )ﬂ/X
) y° 'ﬁ)iﬂ{x”‘JK{%’X 3 3/ s 3
(?/5 ”‘X :_7,,‘ o X e X —7 /7, | . ,
- o s x f = 2 eSSk
[ [(;zmz)(%’%)*;*? J < 4 ‘
- = = O
e pg&:ZXaﬂf




Problem 8. The curve C is given parametrically as
(z,y) = ((10 + cos(2018t)) cost, (10 + cos(2018t)) sint), 0 <t <27

The vector field F' is given as < -2 g T + > >. Find the integral of F

over C, traversed from ¢t = 0 to ¢t = 27.
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Math 323 Midterm Examination 3, Sample 2

Problem 1. Evaluate the integral [ f(z,y,z) ds, where the curve
c
C is given by
7 =< 3cost,3sint, 4t >, 0<t<7

and f(z,9,2) =22 _ <
. e 8=
JV =¢-3sat sz 77, /Mkf“mw
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Problem 2. Given the vector field F' =< y?,y% + 2zy >.
a) Determine if it is conservative. If it is, find its potential.

Qﬂ /?1&’2)(2\:2% . //W% C@MMI/WWL’V/e

< — yu=Clg)

2 (y') =2 Fovp PeJyirTrd ’
y )= 3
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b) Find the integral of F' over the straight oriented segment from
A=(2,0) to B=(0,1).

0, the FTC,  JFd7=PIBIFIY L -of3)
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Problem 3. Find the volume of the solid defined by the inequalities
4yt 4+2 <4, 2222 P -
- Tz - 27 (2
Cs 2= W 2742 (2

So CENIrT ] = f gh m(%()m/@lfpff(@fﬁ”‘/“/@
_ 0

oo | 3 N
e e
‘ _172 ,éL SN SL.L{B/E o) =

Problem 4. Evaluate the integral of the function F(z,y) =z + 1
over the ellipse 422 + 32 < 1 with respect to area.
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Problem 5. Given the vector field
F =< 2%yz, xy?z, zy2® >
a) Find and simplify the curl of F
@ )
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b) Find and simplify the divergence of the curl of F'

9{7\/((’“‘”/{?)): (2= Yy )+ [¥=27) +(%zﬁx2)2 O

¢) Find and simplify the divergence of F

Q;I\/{E’): fl)(%%}% 2)(2 %/tQX(y?' = ‘&(?2

d) Find and simplify the gradient of the divergence of F

V(&'/‘N(E’)): < C;%/ £xZ, 5X9>
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Problem 6. Evaluate the integral

[D//zde

where D is the ball of radius 2 centered at the origin.
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Problem 7. Evaluate the integral of F =< 2z,zy > over the
boundary of the square ABCD, where A = (0,0), B = (3,0), C =
(3,3), and D = (0, 3), traversed counter-clockwise.
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main
Sticky Note
This should be 32, not 1.
So the final answer is 128 pi /9
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Problem 8. Construct an example of a vector field F=<PQ>in
some domain in the plane, such that P, = @), but F' is not conservative.
Justify. ‘
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Math 323 Midterm Examination 3, Sample 3

Problem 1. Find the volume of the solid that lies inside the sphere
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Problem 2. Given the vector field F' =< ¢?,z >.
a) Determine if it is conservative. If it is, find its potential.

M?%P ce>
Co F s pot CW&‘WM“F/\//@ /
IO ﬁ K ﬂ/‘)i,f Jeot )uw,g A/@fﬁ’%é&ﬂ,
i

b) Find the integral of F' over the straight oriented segment from
A=(1,0) to B=(0,1).
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main
Sticky Note

main
Sticky Note
It should by "2y", not 0 here
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Problem 3. Evaluate the integral of the function F(z,y) = x over
the domain D defined by the inequality z% + 2z + 4y2 < 3.
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Problem 4. Evaluate the integral [ f(z,y,z) ds, where the curve
c

C is given by
F=<t,t5t3> 0<t<1
and f(z,y,2) =2z + 9z
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Problem 5. Evaluate the integral

///(x2 —|—y22018) A%

where D is the ball of radius 3 centered at the origin.
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Problem 6. Evaluate the integral of F' =< a:y a:y > over the
boundary of the square ABCD, where A = (1 1), B =(1,2), C =
(2,2), and D = (2,1) (traversed clockW1se <P Q>
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Problem 7. Find the conservative vector field F =< P,Q,R >

such that
P =2zxz, Q=2y+ 3z, R(OOO)—l R does not depend on z.
R=Rleyy="" ’
- R=x%Cly)
{ K}( D%VZX = \ ) ) %_) C/(?) E?f C@ﬁbf%
Ry =R,=3  Cly=F

G P x"r 3y oot

R0 00)= [R*xwgm

b) Find a potential of ' from part (a).

F =v £ =, 4 lytiz,
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2) 9= Y3y + h(2),
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c) Find the integral of F' from part (a) over the curve
7(t) =< t,t%,t* >, where ¢ goes from 0 to 2.
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Problem 8. Construct an example of a non-constant vector field F
on R3 such that both the divergence and the curl of F' are identically
zero. Justify.
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