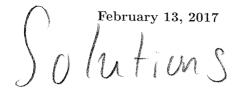
Math 225 Midterm

Name:



Section:

Instructions: Closed book and closed notes. Answers must include supporting work. Calculators and cell phones out of sight.

- 1.(10pts) Give an answer of True or False for the following.
- (a) For any continuous function f on the interval [a,b] we have that

$$\frac{d}{dx}\left(\int_a^b f(x)dx\right) = 0.$$

(b) If f and g are continuous on [a, b], then

$$\int_a^b f(x)g(x)dx = \int_a^b f(x)dx \int_a^b g(x)dx.$$

- (c) If $\int_0^1 f(x)dx = 0$, then f(x) = 0 for all x in interval [0,1].
- (d) If f and g are continuous and $f(x) \le g(x)$ on [a,b], then $\int_a^b f(x)dx \le \int_a^b g(x)dx.$
 - (e) It is sometimes the case that

$$\int_0^x f'(t)dt = f(x).$$

2.(20pts) Evaluate the following integrals.

(a)
$$\int (1+\tan t)^3 \sec^2 t \, dt$$

$$\mathcal{U} = \int (1+\tan t)^3 \sec^2 t \, dt$$

$$\mathcal{U} = \int (1+\tan t)^3 \sec^2 t \, dt$$

$$\int u^3 du = \frac{u^4}{4} + C$$

$$= \frac{\left(1 + t_{ant}\right)^4}{4} + C$$

(b)
$$\int_{0}^{\pi/6} \frac{\sin x}{\cos^{3} x} dx = -\int_{0}^{\sqrt{3}} \sqrt{2} dx$$

$$\int_{0}^{\pi/6} \frac{\sin x}{\cos^{3} x} dx = -\int_{0}^{\sqrt{3}} \sqrt{2} dx$$

$$\int_{0}^{\pi/6} \frac{\sin x}{\cos^{3} x} dx = -\int_{0}^{\sqrt{3}} \sqrt{2} dx$$

$$\int_{0}^{\pi/6} \frac{\sin x}{\cos^{3} x} dx = -\int_{0}^{\sqrt{3}} \sqrt{2} dx$$

$$\int_{0}^{\pi/6} \sqrt{2} dx dx = -\int_{0}^{\pi/6} \sqrt{2} dx$$

(c) $\int s^3 \sqrt{s^2 + 1} ds$

$$x = 0 \Rightarrow u = (us(u) = 1)$$

 $x = \sqrt{u} \Rightarrow u = (us(\frac{\pi}{u}) = \frac{\sqrt{3}}{2})$

$$=\frac{1}{2u^2}\left|\frac{\sqrt{3}k}{1}\right|$$

$$3\sqrt{s^2+1}ds = \frac{1}{2}\int_{-\infty}^{\infty} 3^2\sqrt{1}u \,du$$
 $4u=5^2+1$
 $3\sqrt{s^2+1}ds$
 $3\sqrt{s^2+1}ds$

$$=\frac{1}{2}\int_{-\infty}^{2} (u-1) \sqrt{u} du$$

$$=\frac{1}{5}\int_{0}^{3/2}+u^{1/2}du$$

$$=\frac{1}{5}(s^{2}+1)^{5/2}-\frac{1}{3}(s^{2}+1)^{3/2}+C$$

- 3.(10pts) Determine the following.
- (a) $\int_5^7 f(x)dx$, given that $\int_2^7 f(x)dx = 8$ and $\int_2^5 f(x)dx = 3$.

$$\int_{5}^{7} f(x) dx = \int_{2}^{7} f(x) dx - \int_{2}^{5} f(x) dx
 = 8 - 3 = 5$$

(b) $\int_2^8 f(3x)dx$, given that $\int_6^{24} f(x)dx = 9$.

$$\int_{2}^{8} f(3x) dx = \frac{1}{3} \int_{6}^{24} f(u) du = \frac{1}{3} (9)$$

$$2 to \begin{cases} u = 3x \\ du = 3dx \end{cases} = \frac{1}{x = 8} = u = 6$$

$$2 to \begin{cases} du = 3dx \\ x = 8 = u = 24 \end{cases} = \boxed{3}$$

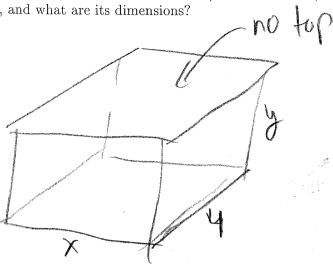
4.(5pts) Evaluate the integral by interpreting it in terms of areas.

$$-\frac{\int_0^5 \sqrt{25-x^2}dx}{25\pi}$$

$$-\frac{25\pi}{4}$$

$$-\frac{1}{2}$$

5.(15pts) A tank with rectangular base base and rectangular sides is open at the top. It is to be constructed so that its width is 4 meters and its volume is 36 cubic meters. If building the tank costs $$10/m^2$ for the base and $$5/m^2$ for the sides, what is the cost of the least expensive tank, and what are its dimensions?



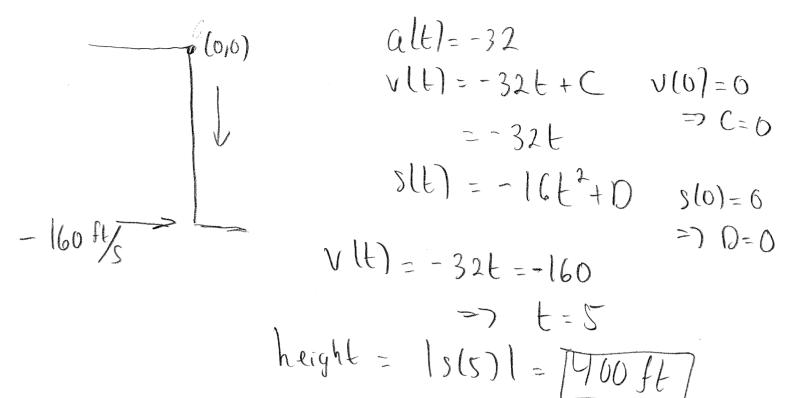
$$C = 10(4x) + 5(2xy)$$

$$C(x) = 40x + 90 + 360$$

$$C(x) = 40x + 90 + 360$$

$$C'(x) = 40 - 360 = 40(x^2 - 9)$$

6.(10pts) A penny is dropped from the top of a building and hits the ground with a speed of 160 ft/s. Determine the height of the building. (You can assume acceleration due to gravity is $32 ft/s^2$)



7.(5pts) Compute the following derivative.

$$= \left(\chi^3\right)^2 \tan\left(\chi^3\right) \cdot 3\chi^2$$

$$+ \left(-\sqrt{\chi^2+1}\right)^2 \tan\left(-\sqrt{\chi^2+1}\right) \left(-\frac{\chi}{\chi^2+1}\right)$$

8.(15pts) The velocity function (in meters per second) for an object moving in a straight line is $v(t) = 6t^2 - 18t + 12$. Find the following for time t = 0 to t = 3.

- (a) The displacement.
- (b) The total distance traveled.

(a)
$$\int_{0}^{3} 6t^{2}-18t+12 dt = 2t^{3}-9t^{2}+12t/0^{3}$$

$$= 9$$
5) $v(t) = 6(t-2)(t-1)$

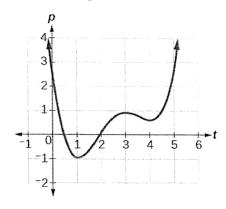
$$v(t) = t - t$$

$$\int_{0}^{3} |v(t)| dt = \int_{0}^{3} 6t^{2}-18t+12 dt - \int_{0}^{2} 6t^{2}-18t+12 dt$$

$$= \int_{0}^{3} 6t^{2}-18t+12 dt - 2\int_{0}^{3} 6t^{2}-18t+12 dt$$

$$= 9+2t-12t$$

9.(10pts) Below is the graph of a function p defined on the entire real line $(-\infty, \infty)$.



Define

$$h(x) = \int_0^x p(t)dt.$$

(a) On what intervals is h increasing/decreasing? Explain.

$$h'(x) = p(x)$$

$$\rho(x)$$
 > 0 on $(-\infty, \frac{1}{2}) \cup (2, \infty)$

$$h'(x) = p(x)$$
 $p(x) > 0$ on $(-\infty, \frac{1}{4}) \cup (2, \infty)$
Increasing: $(-\infty, \frac{1}{4}) \cup (2, 8)$ $p(x) < 0$ on $(-\frac{1}{4}, 2)$
decreasing: $(-\frac{1}{4}, 2)$

$$p(x) < 0$$
 on $(-1/2, 2)$

(b) On what intervals is h concave up/concave down? Explain.

$$h''(x) = h'(x)$$

Concare up:
$$(1,3)\cup(4,\infty)$$

Concare down: $(-\infty,1)\cup(3,4)$