A

T

T
1

LIOL 2020 3.010] 4f5] 5[15] 6[10] 7.Js] 8[15] 9[10] Total: [100]

Math 225 Midterm

February 13, 2017

0 / (7 T,i éf@”% Section:

Name:

Instructions: Closed book and closed notes. Answers must include supporting work. Cal-
culators and cell phones out of sight.

1.(10pts) Give an answer of True or False for the following.

(a) For any continuous function f on the interval [a,b] we have that

([ o)

(b) If f and g are continuous on [a,b], then

fabf(g;)g(a:)dx: /;bf(x)da: ng(x)dx.

(¢) If f; f(z)dz =0, then f(z) =0 for all = in interval [0,1].

(d) If f and g are continuous and f(z) < g(z) on [a,b], then

f;bf(x)dxsﬂbg(x)dx.

(e) It is sometimes the case that
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2.(20pts) Evaluate the following integrals.
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3.(10pts) Determine the following.

(a) [, f(z)dz, given that [, f(z)dz = 8 and [, f(z)dz = 3.

N e = (1000 kol
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(b) f28f(33:)dx, given that f624 f(z)dz = 9.

4.(5pts) Evaluate the integral by interpreting it in terms of areas.
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5.(15pts) A tank with rectangular base base and rectangular sides is open at the top. It is to
be constructed so that its width is 4 meters and its volume is 36 cubic meters. If building the
tank costs $10/m? for the base and $5/m? for the sides, what is the cost of the least expensive

tank, and what are its dimensions? 0 % {‘}
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6.(10pts) A penny is dropped from the top of a building and hits the ground with a speed of
160ft/s. Determine the height of the building. (You can assume acceleration due to gravity is
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7.(5pts) Compute the following derivative.
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8(1 pts) The velocity function (in meters per second) for an object moving in a str raight line
s v(t) = 6t2 - 18t + 12. Find the following for time ¢ = 0 to t 3.

(a) The displacement.
(b) The total distance traveled.
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9.(10pts) Below is the graph of a function p defined on the entire real line (—00,00).
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Define z
h(z) = fo p(1)dt.

(a) On what intervals is h increasing/decreasing? Explain.
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(b) On what intervals is h concave up/concave down? Explain.
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