Math 224 Midterm

February 08, 2017

Name:

Section:

Instructions: Closed book and closed notes. Answers must include supporting work. Calculators and cell phones out of sight.

- 1.(10pts) Give an answer of True or False for the following.
- (a) It is always the case that for any functions f(x) and g(x) we have that

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x).$$

- (b) If f is differentiable at the real number a then f is continuous at a.
- (c) If the function f has a limit at a, then f is continuous at a.
- (d) The derivative of $\frac{f(x)}{g(x)}$ is $\frac{f'(x)}{g'(x)}$.
- (e) If f(x) approaches 0 when $x \to 0$, then we must also have that f'(x) approaches 0 as $x \to 0$.

2.(20pts) Compute the following limits. If the limit does not exist, then explain why.

(a)
$$\lim_{x \to 2} \frac{4x - 8}{|x^2 - 4|}$$

$$\lim_{x \to 2^{-}} \frac{4x+8}{-(x^2-4)} = \lim_{x \to 2^{-}} \frac{4(x+3)}{-(x+3)(x+3)} = -1$$

$$\lim_{x \to 2^+} \frac{y(x-2)}{x^2+4} = 1$$

(b)
$$\lim_{s \to 5^+} \frac{s^2 - 25}{2s^2 - 20s + 50}$$

$$S=S+2(S-5)$$
 = $Im S+5$
 $S=S+2(S-5)$ = $S=S+2(S-5)$

(c)
$$\lim_{x\to 0} \frac{\sin(3x^2)}{(x-1)\sin(2x^2)} = \lim_{\chi\to 0} \frac{\sin(3\chi^2)}{\sin(2\chi^2)} = \lim_{\chi\to 0} \frac{\sin(3\chi^2)}{\cos(2\chi^2)} = \lim_{\chi\to 0} \frac{\sin(3\chi^2)}{\cos(3\chi^2)} = \lim_{\chi\to 0} \frac{\sin(3\chi^2)}{$$

$$= \left(\frac{3}{2}\right)\left(-1\right) = \left[-\frac{3}{2}\right]$$

(d)
$$\lim_{u \to 2} \frac{\sqrt{4u+1} - 3}{u-2}$$

3.(10pts) Find the equation of the tangent line to the graph of g at the point (1,1).

$$g(x) = (6x - 5)^6.$$

You may leave your answer in point-slope form.

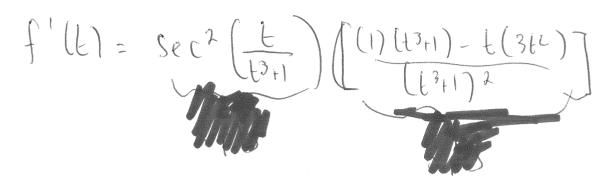
$$y - 1 = 36(x - 1)$$

4.(5pts) Use the Intermediate Value Theorem to show that there is a number c in the given interval such that f(c) = 0. $f(x) = x^2 - x - \sin x, \quad (1,2).$

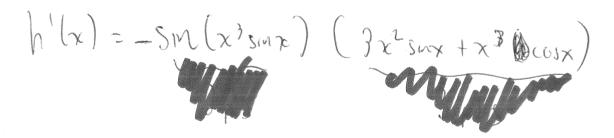
5 pls each

 $5.(15 \mathrm{pts})$ Find the derivatives of the following functions. You do not need to simplify your answer.

(a)
$$f(t) = \tan\left(\frac{t}{t^3+1}\right)$$



(b) $h(x) = \cos(x^3 \sin x)$



(c)
$$g(y) = (4y-1)^4(6-3y)^{-3}$$

$$(4y-1)^3(4)(6-3y)^{-3}$$

$$(4y-1)^4(-3y)^{-3}(-3y)^{-3}$$

6.(15pts) You are given the following piecewise defined function.

$$f(x) = \begin{cases} x^2 - 4x + 8, & x \le 3; \\ 2x - 1, & 3 < x < 4; \\ \sqrt{x^3 - 28}, & x \ge 4. \end{cases}$$

- (b) Where is f(x) differentiable? Justify your answer. $(-\infty, 4) \cup (4, \infty)$
- (c) Write down a formula for f'(x).

(a)
$$\lim_{x\to 3^+} f(x) = 5$$

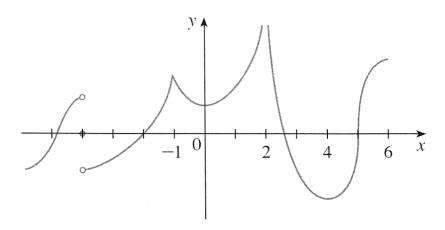
 $\lim_{x\to 3^+} f(x) = \lim_{x\to 3^+} 2x - 1 = 5$
 $\lim_{x\to 3^+} f(x) = \lim_{x\to 3^+} 2x - 1 = 5$

lim
$$f(x) = \lim_{x \to y} 2x - 1 = 7$$
 } f is not continuoust
lim $f(x) = \lim_{x \to y^+} \sqrt{x^2 + 8} = 6$ } at $x = y$

f 17 not continuous at
$$\chi=4$$
, so f is not differentiable at $\chi=4$
lim $f'(x) = \lim_{x \to 3^{-}} 2x - 4 = 2$ of is differentiable
lim $f'(x) = \lim_{x \to 3^{+}} 2 = 2$ of $\chi=3$

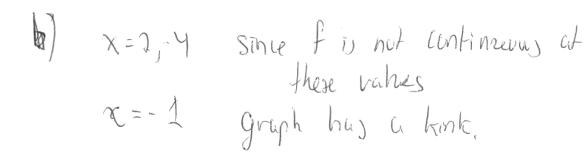
$$f'(x) = \begin{cases} 2x-4 & x \leq 3 \\ 2 & 3 < x < 4 \\ 3x^{3} & x > 4 \end{cases}$$

7.(10pts) The graph of f is shown.



- (a) State the numbers at which f is not continuous. Briefly explain your answer.
- (b) State the numbers at which f is not differentiable. Briefly explain your answer.

$$(a)$$
 $\chi = 1$



8.(5pts) The position function of a particle is given by $s(t) = 3t^2 - t^3$ where $t \ge 0$.

(a) When does the particle reach a velocity of
$$0 \, m/s$$
? What is the significance of these value(s) of t ?

(b) When does the particle have acceleration $0 \, m/s^2$?

(a) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(b) When does the particle have acceleration $0 \, m/s^2$?

(a) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(b) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(c) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(d) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(e) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(f) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(g) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(g) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) = (6t - 3t^2 - 3t(2 - t) - 0)$

(h) $V(t) =$

9.(10pts) Find the derivative of the following function using the definition of the derivative. You will not receive any credit if you use any other method!

$$f(x) = \frac{1}{2x-1}.$$

$$\lim_{h \to 0} \frac{1}{2(x+h)-1} - \frac{1}{2x-1}$$

$$\lim_{h \to 0} \frac{1}{h} = \frac{1}{2(x+h)-1} = \frac{1}{2x-1}.$$

$$\lim_{h \to 0} \frac{1}{h} = \frac{1}{2(x+h)-1} = \frac{1}{2x-1}.$$

$$\lim_{h \to 0} \frac{1}{h} = \frac{1}{2(x+h)-1} = \frac{1}{2x-1}.$$

$$\lim_{h \to 0} \frac{1}{h} = \frac{1}{2x-1}.$$